Abstract:
Methods and systems for transmitting and receiving data include reverse concatenated encoding and decoding. Reverse concatenated decoding includes inner decoding the encoded stream with an inner decoder that uses a low-complexity linear-block code to produce an inner-decoder output stream, outer decoding the inner-decoder output stream with an outer decoder that uses a low-density parity-check code to produce an information stream, and iterating extrinsic bit reliabilities from the outer decoding for use in subsequent inner decoding to improve decoding performance.
Abstract:
Methods and systems for reduced-complexity decoding of low-density parity-check (LDPC) information. An encoded input stream is received. The received stream is decoded with one or more reduced-complexity min-sum or a posteriori probability LDPC decoders. A v-node update rule in the reduced complexity decoder is omitted.
Abstract:
A method of encoding for optical transmission of information includes encoding information with a generalized low-density parity-check (GLDPC) code for providing coding gains, and constructing the GLDPC code with a Reed-Muller RM code as a component code, the component code being decodable using a maximum posterior probability (MAP) decoding. In a preferred embodiment, the GLDPC code includes a codeword length of substantially 4096, an information word length of substantially 3201, a lower-bound on minimum distance of substantially greater than or equal to 16, a code rate of substantially 0.78 and the RM component code includes an order of substantially 4 and an r parameter of substantially 6.
Abstract:
Systems and methods are disclosed to provide optical communication by using subcarriers as individual bases functions, obtaining signal constellation points of an N-dimensional pulse amplitude modulation (ND-PAM) constellation diagram as an N-dimensional Cartesian product of a one-dimensional PAM; and transmitting the N-dimensional signal constellation point over all N orthogonal subcarriers serving as individual bases functions.
Abstract:
The invention provides methods, devices and a system for recovering the corrupted subcarrier at the local oscillator (LO) frequency in coherent optical OFDM transmission. The method includes performing advanced coding on a data signal to obtain an encoded signal; performing high order modulation on the encoded signal to obtain a high-order-modulated signal; performing OFDM modulation on the high-order-modulated signal to obtain an electrical OFDM signal; and performing up-conversion on the electrical OFDM signal to obtain an optical OFDM signal to be output. The inventive technique of employing advanced coding with low rate combining with higher order modulation can be used to reduce the decoding bit error ratio (bit error rate) level, so that the LO subcarrier can be fully recovered while the bandwidth of the transmitted signal may be substantially the same as the existing optical OFDM system, and there is no need to add any feedback control module or feedback loop support or the like to the existing optical OFDM system, so that the complexity of the receiving side can be reduced.
Abstract:
A transmitter and method include a LDPC encoder configured to encode source data, and a mapper configured to generate three coordinates in accordance with a 3D signal constellation where the coordinates include an amplitude coordinate and two phase coordinates. A laser source is modulated in accordance with each of the three coordinates to provide a transmission signal. A receiver, includes a demapper receives an input signal from three branches to demap the input signal using a three-dimensional signal constellation having three coordinates. The three branches include a direct detection branch, and two coherent detection branches such that the direct detection branch detects an amplitude coordinate of the input signal and the two coherent detection branches detect in-phase and quadrature coordinates of the input signal. A bit prediction module and at least one LDPC decoder are configured to iteratively decode bits by feeding back extrinsic LLRs to the demapper.
Abstract:
An optical communication system includes a bit-interleaved coded modulation (BICM) coder; and a low-density parity-check (LDPC) coder coupled to the BICM coder to generate codes used as component codes and in combination with a coherent detector.
Abstract:
An optical transport network based on multimode/multicore fibers includes a mode-multiplexer to multiplex independent data streams from one or more transmitters; a multimode erbium-doped fiber amplifier (MM EDFA) to compensate for MMF loss; a multimode optical add-drop multiplexer (MM OADM) to add and/or drop multimode channels in multimode networks; a multimode optical cross-connect; and a mode-demultiplexer to separate various mode streams to one or more receivers.
Abstract:
A coded multidimensional modulation system called generalized OFDM (GOFDM) uses orthogonal subcarriers as bases functions, and the signal constellation points of corresponding multidimensional constellation diagram are obtained as N-dimensional Cartesian product of one-dimensional PAM/two-dimensional QAM. In GOFDM, the N-dimensional/2N-dimensional signal constellation point is transmitted over all N subcarriers/2N-subcarriers, which serve as individual bases functions. Even if some of the subcarriers are severely affected by channel distortion, the overall signal constellation point will face only small distortion, when strong channel capacity achieving channel codes are used. In addition, because the channel capacity is a linear function of number of dimensions, the spectral efficiency of optical transmission systems is significantly improved. Finally, since Euclidean distance of multidimensional signal constellation is much larger that that of two-dimensional signal constellations, OSNR sensitivity is dramatically improved.
Abstract:
A method and apparatus employing statistical physics energy minimization methods to signal constellation design. By using statistical physics concepts, an energy-efficient signal constellation design algorithm (EE-SCDA) is described. In the presence of amplified spontaneous emission (ASE) noise and channel impairments, we use EE-SCDA to determine a source distribution, and represent the signal constellation design as a center of mass problem. Furthermore a discrete-time implementation of D-dimensional transceiver as well as corresponding EE polarization-division multiplexed (PDM) system is described.