Abstract:
The approach proposed here relates to a method for providing at least one emission value for a means of transport. The method comprises a step of reading in an identification parameter that represents at least one type of the means of transport present in an observation area. The method furthermore comprises a step of ascertaining the at least one emission value for the means of transport from a memory that stores an assignment of the at least one type of the means of transport to the emission value, wherein the emission value represents a parameter of an emission coming from the means of transport into an environment of the means of transport. The method lastly comprises a step of outputting the ascertained emission value to an output interface in order to provide the emission value.
Abstract:
A method for detecting a traffic law violation due to the allowable distance between a following vehicle and a guide vehicle being undershot, the following vehicle traveling behind the guide vehicle. At least the respective speed of the following vehicle is identified and the guide vehicle in a detection region in the surroundings of a sensor which supplies speed measurement values. A reference distance is detected and/or ascertained between the following vehicle and the guide vehicle at a reference measurement point. At least one following distance is determined between the following vehicle and the guide vehicle in the detection region using the identified speeds of the following vehicle and the guide vehicle and/or the detected reference distance. A traffic law violation is detected if the following distance in the detection region continuously falls short of a distance threshold.
Abstract:
A device for a system for traffic monitoring of vehicles in road traffic, the device having a first mounting frame and a second mounting frame, which can be secured relative to each other by inner fixing elements. At least the first mounting frame has a cylindrical, especially cuboidal, shape. At least one device for recording a traffic situation can be disposed or is disposed in the first mounting frame and wherein at least the first mounting frame is accessible from four sides.
Abstract:
A method for detecting a traffic violation in a traffic light zone through rear end measurement by a FMCW radar device (1). A specific position (sP1) assigned to the front of a vehicle (3) and the radial velocity are derived from the measurement signal obtained at a first measurement time (t1), and a first anticipated position (eP1) for the front of the vehicle is calculated by the distance-time rule at the second measurement time (t2) by means of the time period between the first measurement time (t1) and the second measurement time (t2). Through repeated calculation of an anticipated position for the front of the vehicle at further measurement times, an anticipated time when the front of the vehicle crosses a stop line (5) defining the traffic light zone is predicted iteratively with the determined vehicle velocity.
Abstract:
The invention is directed to a method for detecting and documenting the speeds of a plurality of vehicles in an image document. The plurality of vehicles drive simultaneously through the measurement zone of a radiation-based, multitarget-capable measuring arrangement. Vehicle-specific measurement data are acquired from the measurement results, and measurement data sets are formed from these vehicle-specific measurement data and stored. One of the vehicles driving at a speed above a limiting value causes a camera to be triggered. An image document in which a speed is displayed so as to be assigned to the imaged vehicles is generated from the image data acquired by the camera and from the last stored measurement data set.
Abstract:
A method for recording a traffic situation when a vehicle drives past a recording device, the method includes reading in a first image which depicts the vehicle at a first point in time at a first position in an area surrounding the recording device and a second image which depicts the vehicle at a second point in time at a second position in the area surrounding the recording device. In addition, a step of sensing a speed of the vehicle at the first and/or second point in time and/or in a time interval between the first and/or second point in time is provided. Also provided is a step of storing the first image and the second image, the first and second points in time and/or a time period between the first and second points in time, as well as the speed of the vehicle as a traffic situation data set.
Abstract:
An apparatus for detecting a speed and a distance of at least one object with respect to a receiver of a reception signal. The apparatus has at least one interface for reading in at least one in-phase component and one quadrature component of a plurality of temporally successive reception signals each representing a signal which is reflected to the receiver at the object and was emitted at a predefined transmission frequency. The apparatus also has a unit for forming a first detection value and a unit for determining a second detection value and a unit for determining a speed, corresponding to a reference speed, of the object with respect to the receiver and the reference distance as the distance of the object with respect to the receiver using the first and second detection values.
Abstract:
A method for aligning a measuring device installed alongside a roadway at an unknown installation height, the measuring device including a laser scanner, a camera and a display. A camera image generated by the camera is inserted into the display and superimposed by a road model, formed from a multiplicity of straight lines running towards an intersection point. The measuring device is subsequently rotated and tilted, as a result of which the camera image is rotated and shifted on the display, until the images of the roadway margins and edges running parallel thereto are in alignment at the intersection point.
Abstract:
The invention relates to a method for carrying out a dynamic range compression in traffic photography for representation having greater detail fidelity in images created in connection with traffic monitoring installations. The problem addressed by the invention is that of finding a possibility for achieving, in the case of digitally obtained images in traffic photography, whilst precluding the different subjective influences on the part of the processing personnel, a representation of the dark regions with greater detail fidelity, without the information of the brighter regions being lost in the process. According to the invention, this problem is solved by means of a method for carrying out a specific dynamic range compression in traffic photography.
Abstract:
A testing apparatus and a testing method for a traffic monitoring device with a laser scanner. The testing apparatus has an adjusting plate which provides a receiving place for receiving a traffic monitoring device which is to be tested and a measuring board. A line pattern along an imaginary straight line extending at the height of the reference scanning plane is provided on the measuring board which has a matte black surface. Vertical lines and a diagonal line are arranged on the straight line, and the diagonal line forms an angle with the straight line, which angle is selected in such a way that laser pulses emitted by the laser scanner form at least three laser spots with a reference laser spot width and a reference laser spot length on the diagonal line.