Abstract:
A method for recognizing the validity of a vehicle parameter. The method comprises a step of reading at least one first parameter and at least one second parameter, wherein the first parameter represents a first physical variable of the vehicle or a variable derived from the first physical variable, and the second parameter represents a second physical variable of the vehicle or a variable derived from the second physical variable. A distinguishing criterion for recognizing the validity of the vehicle parameter of the vehicle using a combination of the first and second parameter is also read. The method also comprises a step of assigning the vehicle parameter as a valid vehicle parameter if a combination of the first and the second parameter meets the distinguishing criterion.
Abstract:
A method for contact-free axle counting of a vehicle on a road, including a step of reading in first image data and reading in second image data, wherein the first image data and/or the second image data represent image data provided to an interface by an image data recording sensor arranged on a side of the road. The first image data and/or the second image data comprise an image of the vehicle. The first image data and/or the second image data is processed in order to obtain processed first image data and/or processed second image data. By using the first image data and/or the second image data in a substep of detecting, at least one object is detected in the first image data and/or the second image data, and wherein object information is provided representing the object and assigned to the first image data and/or the second image data.
Abstract:
A method for recording a traffic situation when a vehicle drives past a recording device, the method includes reading in a first image which depicts the vehicle at a first point in time at a first position in an area surrounding the recording device and a second image which depicts the vehicle at a second point in time at a second position in the area surrounding the recording device. In addition, a step of sensing a speed of the vehicle at the first and/or second point in time and/or in a time interval between the first and/or second point in time is provided. Also provided is a step of storing the first image and the second image, the first and second points in time and/or a time period between the first and second points in time, as well as the speed of the vehicle as a traffic situation data set.
Abstract:
A method for aligning a measuring device installed alongside a roadway at an unknown installation height, the measuring device including a laser scanner, a camera and a display. A camera image generated by the camera is inserted into the display and superimposed by a road model, formed from a multiplicity of straight lines running towards an intersection point. The measuring device is subsequently rotated and tilted, as a result of which the camera image is rotated and shifted on the display, until the images of the roadway margins and edges running parallel thereto are in alignment at the intersection point.
Abstract:
A testing apparatus and a testing method for a traffic monitoring device with a laser scanner. The testing apparatus has an adjusting plate which provides a receiving place for receiving a traffic monitoring device which is to be tested and a measuring board. A line pattern along an imaginary straight line extending at the height of the reference scanning plane is provided on the measuring board which has a matte black surface. Vertical lines and a diagonal line are arranged on the straight line, and the diagonal line forms an angle with the straight line, which angle is selected in such a way that laser pulses emitted by the laser scanner form at least three laser spots with a reference laser spot width and a reference laser spot length on the diagonal line.