Abstract:
A lost motion engine valve actuation system and method of actuating an engine valve are disclosed. The system may comprise a valve train element, a pivoting lever, a control piston, and a hydraulic circuit. The pivoting lever may include a first end for contacting the control piston, a second end for transmitting motion to a valve stem and a means for contacting a valve train element. The amount of lost motion provided by the system may be selected by varying the position of the control piston relative to the pivoting lever. Variation of the control piston position may be carried out by placing the control piston in hydraulic communication with a control trigger valve and one or more accumulators. Actuation of the trigger valve releases hydraulic fluid allowing for adjustment of the control piston position. Means for limiting valve seating velocity, filling the hydraulic circuit upon engine start up, and mechanically locking the control piston/lever for a fixed level of valve actuation are also disclosed.
Abstract:
A system for actuating engine valve comprises a main valve actuation motion source configured to supply main valve actuation motions to the at least one engine valve via a main motion load path, and an auxiliary valve actuation motion source separate from the main valve actuation motion source and configured to supply complementary auxiliary valve actuation motions to the at least one engine valve via an auxiliary motion load path. A lost motion component is configured, in one state, to maintain lash between the auxiliary valve actuation motion source and the auxiliary motion load path or within the auxiliary motion load path and, in another state, to take up this lash. The auxiliary valve actuation motion source is further configured to supply at least one lash-prevention valve actuation motion that substantially matches at least one of the main valve actuation motions.
Abstract:
In an engine comprising a cylinder having first and second engine valves of a same function type, a system for actuating the first and second engine valves comprises a first and second master pistons that receive first and second valve actuation motions from respective ones of a first and second valve actuation motion source, a first slave piston operatively connected to the first engine valve and configured to hydraulically receive the first valve actuation motions from at least the first master piston and a second slave piston operatively connected to the second engine valve and configured to hydraulically receive the second valve actuation motions from the second master piston. The system further comprises an accumulator and a mode selector valve in hydraulic communication with the first master piston, the first slave piston and the accumulator. The mode selector valve may selectively hydraulically connect the first master piston to the accumulator.
Abstract:
A controller of an internal combustion engine receives a request for engine braking and, in response thereto, activates an exhaust braking subsystem. Additionally, after passage of a period of time, the controller further activates a compression release braking subsystem. The period of time is preferably selected to permit development of increased back pressure in an exhaust system of the internal combustion engine prior to activation of the compression release braking subsystem. Additionally, following activation of the exhaust braking subsystem, the controller may whether the exhaust braking subsystem has failed and, if so, cause the compression release braking subsystem to operate in a reduced braking power mode, for example at less than full braking power potentially down to and including no braking power.