摘要:
The present invention relates generally to methods and compositions for the identification of differential protein expression patterns and concomitantly the active genetic regions that are directly or indirectly involved in different tissue types, disease states, or other cellular differences desirable for diagnosis or for targets for drug therapy.
摘要:
The present invention relates generally to methods and compositions for the identification of differential protein expression patterns and concomitantly the active genetic regions that are directly or indirectly involved in different tissue types, disease states, or other cellular differences desirable for diagnosis or for targets for drug therapy.
摘要:
The invention includes a viral vector method and composition comprising transcomplementary replication incompetent viral vectors, preferably adenoviral vectors, which are cotransformed to a recipient cell. The two vectors complement each other and thus allow viral replication, in a synergistic combination which enhances both gene delivery and gene expression of genetic sequences contained within the vector.
摘要:
The invention includes a viral vector method and composition comprising transcomplementary replication incompetent viral vectors, preferably adenoviral vectors, which are cotransformed to a recipient cell. The two vectors complement each other and thus allow viral replication, in a synergistic combination which enhances both gene delivery and gene expression of genetic sequences contained within the vector.
摘要:
A method is described for the rapid identification and isolation of cells based on the presence or absence of an ectopically-expressed N-acetyllactosaminide 3-α Galactosyltransferase (αGT) enzyme for the production of αGalactosyl-(1,3)Galactosyl (αGal) epitopes on the surface of αGal-negative cells. These cells which are genetically modified to express the αGT enzyme and αGal epitopes on glycosylated lipids and proteins of the cell surface are then labeled via an antibody composition which recognizes and binds the αGal epitopes on the cell surface. Cells labeled with the anti-αGal antibody can be isolated by sorting via fluorescence activated cell sorting (FACS), or by magnetic panning techniques. This method is suitable for the rapid positive or negative selection of αGal-positive cells from within a population of αGal-negative cells without the need to expose cells to antibiotics for any period of time. In addition, the specification provides a method for the production and purification of anti-αGal antibodies from chicken egg yolk.