摘要:
A data processing system is provided in which destination operands to be stored within architectural registers are constrained to have zero values added as prefixes in order that the architectural register value has a fixed bit width irrespective of the bit width of the destination operand being written thereto. Instead of adding these zero values everywhere in the data path, they are instead represented by zero flags in at least the physical registers utilized for register renaming operations and in the result queue prior to results being written to the architectural register file. This saves circuitry resources and reduces energy consumption.
摘要:
A processor core supports execution of program instruction from both a first instruction set and a second instruction set. An architectural register file 18 containing architectural registers is shared by the two instruction sets. The two instruction sets employ logical register specifiers which for at least some values of those logical registers specifiers correspond to different architectural registers within the architectural register file 18. A first decoder 4 for the first instruction set and a second decoder 6 for the second instruction set serve to decode the logical register specifiers to a common register addressing format. This common register addressing format is used to supply register specifiers to renaming circuitry 10 for supporting register renaming in conjunction with a physical register file 16 and an architectural register file 18.
摘要:
A processor 2 for performing out-of-order execution of a stream of program instructions includes a special register access pipeline for performing status access instructions accessing a status register 20. In order to serialise these status access instructions relative to other instructions within the system access timing control circuitry 32 permits dispatch of other instructions to proceed but controls the commit queue and the result queue such that no program instructions in program order succeeding the status access instruction are permitted to complete until after a trigger state has been detected in which all program instructions preceding in program order the status access instruction have been performed and made any updates to the architectural state. This is followed by the performance of the status access instruction itself.
摘要:
A loop buffer is provided with a main store 26 and an auxiliary store 28. The main store 26 stores micro-operation instructions. The auxiliary store 28 has fewer entries than the main store 26 and stores target addresses for predicted taken branch instructions stored within the main store 26. Read control circuitry serves to control reading from the main store and from an auxiliary store such that target addresses are read from the auxiliary store in association with the predicted taken branch instructions read from the main store.
摘要:
A processor is disclosed having a plurality of general purpose registers for storing data for processing by the processor; a set of system configuration registers for storing data indicative of a current configuration of the processor; the system configuration registers being located together in a register file; and at least some of the set of system configuration registers having a shadow register for storing a duplicate value remote from the register file, the shadow register being located close to a component that the shadow register stores a configuration value for.
摘要:
The present invention provides a method and apparatus for allowing autonomous, way specific tag updates. More specifically, the invention provides way specific tag and status updates while concurrently allowing reads of the ways not currently being updated. If a read hit is determined, then the read is processed in a typical fashion. However, if the read is a read miss and one of the ways is flagged as being updated, then all ways are read again once the specific way has completed its updated.
摘要:
Where a plurality of ordered transactions are received for data transfers on a pipelined bus, each transaction in the series is initiated before all prospective retry responses to the preceding ordered transactions may be asserted. The address responses to all preceding ordered transfers are then monitored in connection with performance of the newly initiated transfer. If a retry response to any preceding ordered transaction is asserted, a self-initiated retry response for all subsequent transactions, including the newly initiated transfer, is also asserted. The system-retried transactions and all succeeding, ordered transactions are immediately reattempted. The overlapping performance of the ordered transfers reduces the latency of non-retried transfers, achieving performance comparable to non-ordered transactions. Even where a retry response is asserted, the total latency required for completion of both transactions in the ordered pair is reduced by at least a portion of the address-to-response latency, so that the impact of ordering requirements on system performance is minimized. Strict ordering is thus enforced while taking full advantage of the pipelined nature of the bus to maximize utilization of the bus bandwidth.
摘要:
A data processing system is provided in which destination operands to be stored within architectural registers are constrained to have zero values added as prefixes in order that the architectural register value has a fixed bit width irrespective of the bit width of the destination operand being written thereto. Instead of adding these zero values everywhere in the data path, they are instead represented by zero flags in at least the physical registers utilised for register renaming operations and in the result queue prior to results being written to the architectural register file. This saves circuitry resources and reduces energy consumption.
摘要:
A processor core supports execution of program instruction from both a first instruction set and a second instruction set. An architectural register file 18 containing architectural registers is shared by the two instruction sets. The two instruction sets employ logical register specifiers which for at least some values of those logical registers specifiers correspond to different architectural registers within the architectural register file 18. A first decoder 4 for the first instruction set and a second decoder 6 for the second instruction set serve to decode the logical register specifiers to a common register addressing format. This common register addressing format is used to supply register specifiers to renaming circuitry 10 for supporting register renaming in conjunction with a physical register file 16 and an architectural register file 18.
摘要:
An out-of-order renaming processor is provided with a register file within which aliasing between registers of different sizes may occur. In this way a program instruction having a source register of a double precision size may alias with two single precision registers being used as destinations of one or more preceding program instructions. In order to track this data dependency the double precision register may be remapped into a micro-operation specifying two single precision registers as its source register. In this way, scheduling circuitry may use its existing hazard detection and management mechanisms to handle potential data hazards and dependencies. Not all program instructions having such data hazards between registers of different sizes are handled by this source register remapping. For these other program instructions a slower mechanism for dealing with the data dependency hazard is provided. This slower mechanism may, for example, be to drain all the preceding micro-operations from the execution pipelines before issuing the micro-operation having the data hazard.