摘要:
A solid immersion tunneling ellipsometer and methods relating thereto may include a solid immersion apparatus (e.g., a prism or an objective lens in combination with a solid immersion lens) that facilitates optical tunneling and provide information that can be used in the determination of one or more characteristics (e.g., thickness, index of refraction, etc.) of samples (e.g., thin films, ultrathin films, etc.).
摘要:
A lens system for use with a linearly arrayed light beam including a first optical element for receiving and redirecting different portions of the linearly arrayed light beam to different locations on an imaginary plane so as to generate a two-dimensional pattern of light beams on the imaginary plane; and a second optical element located at the imaginary plane and aligned with the two-dimensional pattern of light beams for redirecting each of the light beams of the two-dimensional pattern of light beams to any arbitrary direction.
摘要:
Method for making a custom phase-conjugating diffractive mirror for a laser resonator comprising the steps of: (a) choosing a specified beam mode profile a.sub.1 (x,y) that will suit need of said designer, (b) calculating the mode profile b(x',y') which is a value of the specified beam a.sub.1 (x,y) that is propagated to the reflection surface of the diffractive mirror and (c) calculating mirror reflectance t(x',y') which reflects phase conjugate of b(x',y'). A method for fabricating such a mirror is shown. Another aspect of the invention is the addition of a phase adjusting element into a laser resonator, and compensating for the addition of a phase adjusting element in the design of other phase-adjusting elements such as the mirrors.
摘要:
A lens system for use with a linearly arrayed light beam including a first optical element for receiving and redirecting different portions of the linearly arrayed light beam to different locations on an imaginary plane so as to generate a two-dimensional pattern of light beams on the imaginary plane; and a second optical element located at the imaginary plane and aligned with the two-dimensional pattern of light beams for redirecting each of the light beams of the two-dimensional pattern of light beams to any arbitrary direction.
摘要:
Method for making a custom phase-conjugating diffractive mirror for a laser resonator comprising the steps of: (a) (a) choosing a specified beam mode profile a.sub.i (x,y) that will suit need of said designer, (b) calculating the mode profile b(x',y') which is a value of the specified a.sub.i (x,y) that is propagated to the reflection surface of the diffractive mirror and (c) calculating mirror reflectance t(x',y') which reflects phase conjugate of b(x',y'). A method for fabricating such a mirror is shown. Another aspect of the invention is the addition of a phase adjusting element into a laser resonator, and compensating for the addition of a phase adjusting element in the design of other phase-adjusting elements such as the mirrors.
摘要:
An optical element for converting a uniform beam of light of wavelength .lambda. into an array of illuminated spots, the optical element including a phase plate made of an array of constant phase zones; and an image plane disposed parallel to and at a preselected distance from the phase plate, the preselected distance being selected so that illuminating the phase plate with uniform coherent illumination of wavelength .lambda. produces the array of illuminated spots on the image plane, the spot array having a fill factor in at least one dimension that is less than 1/2.
摘要:
A diffractive lenslet array receives light from multiple lasers. The lenslet array is spaced apart from a partially reflecting mirror by a distance Z=nd.sup.2 /.lambda. where n is an integer or half integer, .lambda. is the laser wavelength and d is the spacing of the lenslets in the array. In a preferred embodiment the apparatus is a unitary design in which the lenslets are etched into one surface of a substrate and a parallel surface is coated to form the partially reflecting mirror. The lenslets abut one another to produce a fill factor (percentage of array containing light) close to one and each of the lenslets is a multistep diffractive lens. Diffractive speading over a round trip distance from lasers to mirror and back again causes feedback light from a single lenslet to couple into adjacent lenslets. The light from all the lenslets is coupled back into the laser waveguides efficiently only when the wavefront at each of the lenslets is flat, that is, when the phase of the feedback is uniform across a lenslet. Uniformity is achieved when the separation between lenslet array and mirror is the Talbot self-imaging condition set forth above.
摘要:
An ellipsometer apparatus and method for use in providing an image of at least a portion of a sample includes an objective lens having a focal plane at which a sample plane of a sample is positioned. Linearly polarized light normal to the sample plane incident on the objective lens is provided, and the incident linearly polarized light is focused onto the sample. At least a portion of the focused incident polarized light is reflected by the sample resulting in reflected light. Spatial filtering is used to modify at least a portion of the incident or the reflected light. An analyzer portion is operable to generate polarization information based on the reflected light.
摘要:
An ellipsometer and ellipsometry method uses radial symmetry. For example, circularly polarized light may be focused to a spot on a sample using an objective lens and reflected therefrom. A radially symmetric ellipsometric signal based on the reflected light and representative of at least one characteristic of the sample may be attained using a radially symmetric analyzer apparatus, e.g., a pure Polarization rotator such as two half wave plates and a radially symmetric analyzer such as a birefringent lens.
摘要:
A binary phase-only optical correlation system incorporating therein a binary phase-only filter. The binary phase-only optical filter is made by mathematically generating preselected phase-only information by a fast Fourier Transform technique. This generated phase-only information is binarized into a function having two values. This binarized function is utilized to produce a mask which in turn is used in conjunction with an appropriate optical substrate to produce the binary phase-only filter. The manufacture of the binary phase-only filter is substantially easier than the production of a phase-only filter yet virtually the same correlation results when the binary phase-only filter when it is used in an optical correlation system.