摘要:
A method for reducing line edge roughness (LER) in a layer of photoresist is provided. In accordance with the method, a layer of photoresist is applied to a substrate. The layer of photoresist is then patterned and annealed in an atmosphere comprising at least one gas selected from the group consisting of hydrogen, nitrogen and fluorine-containing materials. Preferably, the anneal is performed after patterning the photoresist, but either immediately after, or subsequent to, the trim.
摘要:
A semiconductor device has trenches for defining active regions. After a thin diffusion barrier is deposited in the trenches, some of the trenches are selectively etched to leave different areas in the trench. One of the areas has the diffusion barrier completely removed so that the underlying layer is exposed. Another area has the diffusion barrier remaining. An oxidation step follows so that oxidation occurs at a corner where the diffusion barrier was removed whereas the oxidation is blocked by the diffusion barrier, which functions as a barrier to oxygen. The corners for oxidation are those in which compressive stress is desirable, such as along a portion of the border of a P channel transistor. The corners where the diffusion barrier is left are those in which a compressive stress is undesirable such as the border of an N channel transistor.
摘要:
A method for forming a portion of a semiconductor device structure comprises providing a semiconductor-on-insulator substrate having a semiconductor active layer, an insulation layer, and a semiconductor substrate. A first isolation trench is formed within the semiconductor active layer and a stressor material is deposited on a bottom of the first trench, wherein the stressor material includes a dual-use film. A second isolation trench is formed within the semiconductor active layer, wherein the second isolation trench is absent of the stressor material on a bottom of the second trench. The presence and absence of stressor material in the first and second isolation trenches, respectively, provides differential stress: (i) on one or more of N-type or P-type devices of the semiconductor device structure, (ii) for one or more of width direction or channel direction orientations, and (iii) to customize stress benefits of one or more of a or semiconductor-on-insulator substrate.
摘要:
A semiconductor device is made by patterning a conductive layer for forming gates of transistors. The process for forming the gates has a step of patterning photoresist that overlies the conductive layer. The patterned photoresist is trimmed so that its width is reduced. Fluorine, preferably F2, is applied to the trimmed photoresist to increase its hardness and its selectivity to the conductive layer. Using the trimmed and fluorinated photoresist as a mask, the conductive layer is etched to form conductive features useful as gates. Transistors are formed in which the conductive pillars are gates. Other halogens, especially chlorine, may be substituted for the fluorine.