摘要:
Provided are an optical switch device having a simple light path and capable of achieving high speed switching, and a method of manufacturing the optical switch device. The optical switch device comprises one or more first optical waveguides extending in a first direction, one or more second optical waveguides connected to the first optical waveguides in a second direction crossing the first direction, and one or more switching parts configured to control light transmitted in the first direction within the first optical waveguide connected with the second waveguide, to selectively reflect the light to the second waveguide extending in the second direction.
摘要:
The present invention relates to a total reflection type optical switch using polymer insertion type silica optical waveguides and a manufacturing method thereof. The total reflection type optical switch forms a trench in an intersecting point of the silica optical waveguides having two optic routes, and inserts a polymer into the trench. A total reflection type optical switch has a heater which heats the polymer. The polymer is made of thermo-optic material, and totally reflects an optical signal as a refraction index falls when heated by the heater. In addition, when not heated by the heater, the polymer transilluminates the optical signal. When the polymer is made of electric-optic material, the total reflection type optical switch may have upper and lower electrodes for applying an electric field in the polymer instead of the heater. In this case, the total reflection type optical switch is capable of high speed switching, and is not limited to usages of an optical switch, and may be used as a variable optical attenuator by adjusting the voltage and current being applied. According to the present invention, it is possible to use the difference of the refraction indexes of the silica optical waveguides and the polymer due to temperature changes to transilluminate or totally reflect an optical signal according to changes of the refraction index of the polymer, thereby improving loss characteristics of the optical signal.
摘要:
An optical matrix switch includes connection optical waveguides, a 2×2 optical switch including two straight optical waveguides which are parallel to each other, two crossing optical waveguides which connects the insides of the straight optical waveguides and mutually intersects in an X shape, and electrodes which are disposed on portions where the straight optical waveguide and the crossing optical waveguide are connected. The connection optical waveguides include a straight connection optical waveguide which connects one of the straight optical waveguides of one of the 2×2 optical switches in one column and a straight optical waveguide of a 2×2 optical switch in the same row of an adjacent column, and a crossing connection optical waveguide which connects the other of the straight optical waveguides with a straight optical waveguide of 2×2 optical switch in the other row of an adjacent column
摘要:
Provided is a wavelength division multiplexer/demultiplexer having a flat wavelength response. In the wavelength division multiplexer/demultiplexer, a modified taper-shaped optical waveguide is interposed between an input waveguide and a first slab waveguide, such that the distribution of an optical signal input to an Arrayed Waveguide Grating (AWG) has a sinc-function shape. Thus, a flat wavelength response can be obtained in an output waveguide. In addition, the modified taper-shaped optical waveguide interposed to obtain a flat wavelength response has a small size and a simple structure, and thus can be applied to a conventional wavelength division multiplexer/demultiplexer without a design change.
摘要:
Provided is a wavelength division multiplexer/demultiplexer having a flat wavelength response. In the wavelength division multiplexer/demultiplexer, a modified taper-shaped optical waveguide is interposed between an input waveguide and a first slab waveguide, such that the distribution of an optical signal input to an Arrayed Waveguide Grating (AWG) has a sinc-function shape. Thus, a flat wavelength response can be obtained in an output waveguide. In addition, the modified taper-shaped optical waveguide interposed to obtain a flat wavelength response has a small size and a simple structure, and thus can be applied to a conventional wavelength division multiplexer/demultiplexer without a design change.
摘要:
Provided are a multi-wavelength optical transceiver module and a multiplexer/demultiplexer using a thin film filter. The multi-wavelength optical transceiver module includes: a PLC platform, on which a predetermined optical waveguide unit is formed and an optical transmitter is mounted; an optical fiber coupled to one side of the PLC platform to transmit a predetermined light; a plurality of thin film filters coupled to another side of the PLC platform to separate input optical wavelengths; and an optical receiver coupled to one side of the thin film filters to receive light that is input from the optical fiber and transmits the thin film filters, thereby enabling mass production of the optical transceiver module with low cost.
摘要:
An optical waveguide platform and a manufacturing method thereof are provided. In the provided optical waveguide platform, a terrace on which an optical device is mounted is formed by using an etch stopper pattern formed on a lower clad layer. Therefore, the optical device is mounted without processing a silicon substrate. In addition, in the provided optical waveguide platform, the etch stopper pattern is formed on the lower clad layer to prevent defocus in a photolithography process due to an etch step, so as not to damage a fine waveguide pattern. Moreover, an optical waveguide is formed on the terrace in manufacturing the optical waveguide platform to examine the characteristics of the optical waveguide device before etching a trench.
摘要:
The present invention relates to a total reflection type optical switch using polymer insertion type silica optical waveguides and a manufacturing method thereof. The total reflection type optical switch forms a trench in an intersecting point of the silica optical waveguides having two optic routes, and inserts a polymer into the trench. A total reflection type optical switch has a heater which heats the polymer. The polymer is made of thermo-optic material, and totally reflects an optical signal as a refraction index falls when heated by the heater. In addition, when not heated by the heater, the polymer transilluminates the optical signal. When the polymer is made of electric-optic material, the total reflection type optical switch may have upper and lower electrodes for applying an electric field in the polymer instead of the heater. In this case, the total reflection type optical switch is capable of high speed switching, and is not limited to usages of an optical switch, and may be used as a variable optical attenuator by adjusting the voltage and current being applied. According to the present invention, it is possible to use the difference of the refraction indexes of the silica optical waveguides and the polymer due to temperature changes to transilluminate or totally reflect an optical signal according to changes of the refraction index of the polymer, thereby improving loss characteristics of the optical signal.
摘要:
Disclosed is a transmitter optical module which includes an electro-absorption modulated laser modulating a light into an optical signal through a high-frequency electrical signal; a first sub-mount transferring the high-frequency signal to the electro-absorption modulated laser; and a second sub-mount receiving the high-frequency signal from the electro-absorption modulated laser to terminate the electro-absorption modulated laser. A length of a first wire connecting the first sub-mount and the electro-absorption modulated laser is different from a length of a second wire connecting the second sub-mount and the electro-absorption modulated laser.
摘要:
The inventive concept provides optical switch devices and methods of manufacturing the same. The optical switch device may include a substrate including a first region and a second region, a first multi-mode optical waveguide disposed on the substrate of the first region, an electrode wire disposed on the substrate of the second region, a heater disposed on a top surface of the first multi-mode optical waveguide, and connection wires connecting the heater to the electrode wire. The first multi-mode optical waveguide may have incline sidewalls, and the connection wires may be disposed on the incline sidewalls of the first multi-mode optical waveguide.