Abstract:
Provided are a planar optical waveguide and a method of fabricating the same which is adapted to a planar optical component and an optical component for use in a optical communication. The planar optical waveguide includes: a lower cladding layer formed on a substrate, a core formed on the lower cladding layer, a dielectric layer covering the core, and an upper cladding layer formed on the lower cladding layer having the dielectric layer. By forming the dielectric layer having a low refractive index between the core and the clad, a difference of refractive indices between the core and the clad increases so that light is densely focused into the core, thereby forming a single mode having a strong energy to minimize a propagation loss.
Abstract:
Provided are a method and structure for optical connection between an optical transmitter and an optical receiver. The method includes the steps of: forming on a substrate a light source device, an optical detection device, an optical transmission unit electrically connected with the light source device, and an optical detection unit electrically connected with the optical detection device; preparing a flexible optical transmission-connection medium to optically connect the light source device with the optical detection device; cutting the prepared optical transmission-connection medium and surface-finishing it; and connecting one end of the surface-finished optical transmission-connection medium with the light source device and the other end with the optical detection device. Fabrication of an optical package having a 3-dimensional structure is facilitated and fabrication time is reduced, thus improving productivity. In addition, since the optical transmission-connection medium is directly connected with the light source device and the optical detection device, a polishing operation or additional connection block is not required, thus facilitating mass production.
Abstract:
Provided are a planar optical waveguide and a method of fabricating the same which is adapted to a planar optical component and an optical component for use in a optical communication. The planar optical waveguide includes: a lower cladding layer formed on a substrate, a core formed on the lower cladding layer, a dielectric layer covering the core, and an upper cladding layer formed on the lower cladding layer having the dielectric layer. By forming the dielectric layer having a low refractive index between the core and the clad, a difference of refractive indices between the core and the clad increases so that light is densely focused into the core, thereby forming a single mode having a strong energy to minimize a propagation loss.
Abstract:
A dielectric resonator includes a dielectric block having an open surface at one of the surfaces thereof, the remaining surfaces being plated with a conductor. The dielectric block has an inner conductor hole formed at a surface of the dielectric block opposite to the open surface, the inner conductor hole extending a predetermined depth toward the open surface such that it does not perforate through the open surface. An electrode pattern is formed on the open surface such that it faces an end surface of the inner conductor hole, the electrode pattern being adapted to provide an input/output capacitor. The dielectric block has a coupling window formed on a predetermined portion of one of the surfaces of the dielectric block, except for the open surface and the surface formed with the inner conductor hole, at a position adjacent to one of the open surface and the surface formed with the inner conductor hole. The coupling window is free of the plated conductor and adapted to control a coupling degree of the resonator to another resonator. Other embodiments include integral type filters having resonators in a single dielectric block.
Abstract:
Provided are a multi-wavelength optical transceiver module and a multiplexer/demultiplexer using a thin film filter. The multi-wavelength optical transceiver module includes: a PLC platform, on which a predetermined optical waveguide unit is formed and an optical transmitter is mounted; an optical fiber coupled to one side of the PLC platform to transmit a predetermined light; a plurality of thin film filters coupled to another side of the PLC platform to separate input optical wavelengths; and an optical receiver coupled to one side of the thin film filters to receive light that is input from the optical fiber and transmits the thin film filters, thereby enabling mass production of the optical transceiver module with low cost.
Abstract:
An apparatus for detecting a bio material includes: an conjugate of a bio material and a fluorescent material to be excited and emit light of a lower energy than an energy of incident light by virtue of the fluorescent material when the light is incident; and an optical filter for allowing the excitation-emitted light from the conjugate, among the incident light, to be transmitted therethrough. The apparatus further includes a photoelectric conversion device for converting the light transmitted through the optical filter into an electric signal.
Abstract:
Provided are a method and structure for optical connection between an optical transmitter and an optical receiver. The method includes the steps of: forming on a substrate a light source device, an optical detection device, an optical transmission unit electrically connected with the light source device, and an optical detection unit electrically connected with the optical detection device; preparing a flexible optical transmission-connection medium to optically connect the light source device with the optical detection device; cutting the prepared optical transmission-connection medium and surface-finishing it; and connecting one end of the surface-finished optical transmission-connection medium with the light source device and the other end with the optical detection device. Fabrication of an optical package having a 3-dimensional structure is facilitated and fabrication time is reduced, thus improving productivity. In addition, since the optical transmission-connection medium is directly connected with the light source device and the optical detection device, a polishing operation or additional connection block is not required, thus facilitating mass production.
Abstract:
Provided is an optical connection apparatus for a parallel optical interconnect module and a parallel optical interconnect module using the same for reducing a coupling loss generated due to an alignment error when coupled with an optical fiber, comprising: a 2D reflector in a prism shape and having at least two rows of cylinder type lens attached thereto; a 2D optical waveguide having at least two layers of core arrays; at least two rows of 2D optical benches; and a 2D ferrule capable of loading at least two layers of optical fibers so as to facilitate the fixing of the 2D optical waveguide for optical interconnection.