Abstract:
Provided are an optical switch device having a simple light path and capable of achieving high speed switching, and a method of manufacturing the optical switch device. The optical switch device comprises one or more first optical waveguides extending in a first direction, one or more second optical waveguides connected to the first optical waveguides in a second direction crossing the first direction, and one or more switching parts configured to control light transmitted in the first direction within the first optical waveguide connected with the second waveguide, to selectively reflect the light to the second waveguide extending in the second direction.
Abstract:
Provided is a laser device. In the laser device, an active layer is connected to a stem core of a 1×2 splitter on a substrate, a first diffraction grating is coupled to a first twig core of the 1×2 splitter, and a second diffraction grating is coupled to a second twig core of the 1×2 splitter. An active layer-micro heater is designed to supply heat to the active layer. First and second micro heaters are designed to supply heats to the first and second diffraction gratings, respectively, thereby varying a Bragg wavelength.
Abstract:
Provided is a wavelength division multiplexer/demultiplexer having a flat wavelength response. In the wavelength division multiplexer/demultiplexer, a modified taper-shaped optical waveguide is interposed between an input waveguide and a first slab waveguide, such that the distribution of an optical signal input to an Arrayed Waveguide Grating (AWG) has a sinc-function shape. Thus, a flat wavelength response can be obtained in an output waveguide. In addition, the modified taper-shaped optical waveguide interposed to obtain a flat wavelength response has a small size and a simple structure, and thus can be applied to a conventional wavelength division multiplexer/demultiplexer without a design change.
Abstract:
Provided is a semiconductor laser device including: a gain area where multi-wavelength lights are generated and gain are provided; a first reflection area where among the multi-wavelength lights, a first-wavelength light is reflected to the gain area in response to a first selection signal; a second reflection area where among the multi-wavelength lights, a second-wavelength light is reflected to the gain area; and a phase control area where a phase of the second-wavelength light is shifted in response to a phase control signal, the phase control area being disposed between the first reflection layer and the second reflection layer.
Abstract:
Provided is a multiple distributed feedback laser device. The laser device includes an active layer, a first diffraction grating, and a second diffraction grating. The substrate includes a first distributed feedback region, a modulation region, and a second distributed feedback region. The first diffraction grating is coupled to the active layer in the first distributed feedback region. The second diffraction grating is coupled to the active layer in the second distributed feedback region. In addition, the laser device includes a first micro heater and a second micro heater. The first micro heater supplies heat to the first diffraction grating. The second micro heater supplies heat to the second diffraction grating. The first micro heater and the second micro heater are controlled independently from each other.
Abstract:
Provided is a wavelength division multiplexer/demultiplexer having a flat wavelength response. In the wavelength division multiplexer/demultiplexer, a modified taper-shaped optical waveguide is interposed between an input waveguide and a first slab waveguide, such that the distribution of an optical signal input to an Arrayed Waveguide Grating (AWG) has a sinc-function shape. Thus, a flat wavelength response can be obtained in an output waveguide. In addition, the modified taper-shaped optical waveguide interposed to obtain a flat wavelength response has a small size and a simple structure, and thus can be applied to a conventional wavelength division multiplexer/demultiplexer without a design change.
Abstract:
Provided are an optical waveguide master and a method of manufacturing the same, which has a 90° optical path change structure and an integrated optical waveguide with a 45° inclined reflection surface. The optical waveguide with the inclined reflection surface manufactured using the optical waveguide master facilitates coupling between the active optical electronic device and the waveguide, thereby perfectly overcoming difficulty in conventional mass production. The optical waveguide makes it possible to accomplish connection between various optical devices and optical circuits, and becomes source technology of an optical printed circuit board (PCB) and a system on package (SOP) in the future.
Abstract:
Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is lower than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
Abstract:
Provided are an optical switch device having a simple light path and capable of achieving high speed switching, and a method of manufacturing the optical switch device. The optical switch device comprises one or more first optical waveguides extending in a first direction, one or more second optical waveguides connected to the first optical waveguides in a second direction crossing the first direction, and one or more switching parts configured to control light transmitted in the first direction within the first optical waveguide connected with the second waveguide, to selectively reflect the light to the second waveguide extending in the second direction.
Abstract:
Provided are a photomixer module and a method of generating a terahertz wave. The photomixer module includes a semiconductor optical amplifier amplifying incident laser light and a photomixer that is excited by the amplified laser light to generate a continuous terahertz wave. The photomixer is formed as a single module together with the semiconductor optical amplifier.