Abstract:
A latch-up prevention structure and method for ultra-small high voltage tolerant cell is provided. In one embodiment, the integrated circuit includes an input and/or output pad, a floating high-voltage n-well (HVNW) connected to the input and/or output pad through a P+ in the floating HVNW and also connected to a first voltage supply, a low-voltage n-well (LVNW) connected to a second voltage supply through a N+ in the LVNW, a HVNW control circuit, and a guard-ring HVNW, where the first voltage supply has higher voltage level than the second voltage supply, guard-ring HVNW is inserted in between the floating HVNW and LVNW to prevent a latch-up path between a P+ in HVNW and N+ in LVNW by using the HVNW control circuit that controls the guard-ring HVNW's voltage level. The guard-ring HVNW's voltage level is matched by the floating HVNW's voltage level.
Abstract:
An electrostatic discharge (ESD) protection device includes a well region formed from semiconductor material with a first doping type and a floating base formed from semiconductor material with a second doping type. The floating base is disposed vertically above the well region. The ESD also includes a first terminal receiving region formed from semiconductor material with a third doping type. The first terminal receiving region is disposed vertically above the floating base. The ESD further includes a second terminal receiving region. The second terminal receiving region is laterally spaced apart from the first terminal receiving region by silicon trench isolation (STI) region. In some embodiments, the second terminal receiving region is formed from semiconductor material with the third doping type to form a bipolar junction transmitter (BJT) or with a fourth doping type to form a silicon controlled rectifier (SCR).
Abstract:
A semiconductor device may include body contacts on a finFET device for ESD protection. The semiconductor device comprises a semiconductor fin, a source/drain region and a body contact. The source/drain region and the body contact are in the semiconductor fin. A portion of the fin is laterally between the source/drain region and the body contact. The semiconductor fin is on a substrate.
Abstract:
Fast turn on silicon controlled rectifiers for ESD protection. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of a second conductivity type; a second well of the second conductivity type; a first diffused region of the first conductivity type and coupled to a first terminal; a first diffused region of the second conductivity type; a second diffused region of the first conductivity type; a second diffused region of the second conductivity type in the second well; wherein the first diffused region of the first conductivity type and the first diffused region of the second conductivity type form a first diode, and the second diffused region of the first conductivity type and the second diffused region of the second conductivity type form a second diode, and the first and second diodes are series coupled between the first terminal and the second terminal.
Abstract:
A device for electrostatic discharge (ESD) protection is disclosed. The device for electrostatic discharge protection includes a lateral bipolar transistor and a diode. The semiconductor transistor has an emitter, a base and a collector electrically connected to a first power line (such as Vdd), a second power line (such as Vss) and a bond pad of an integrated circuit respectively. The diode has an n electrode and a p electrode electrically connected to the first power line and the bond pad respectively.
Abstract:
Fast turn on silicon controlled rectifiers for ESD protection. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of a second conductivity type; a second well of the second conductivity type; a first diffused region of the first conductivity type and coupled to a first terminal; a first diffused region of the second conductivity type; a second diffused region of the first conductivity type; a second diffused region of the second conductivity type in the second well; wherein the first diffused region of the first conductivity type and the first diffused region of the second conductivity type form a first diode, and the second diffused region of the first conductivity type and the second diffused region of the second conductivity type form a second diode, and the first and second diodes are series coupled between the first terminal and the second terminal.
Abstract:
An ESD protection device is provided. The ESD protection device of the present invention includes a semiconductor substrate/well, a first doped region, a second doped region and a third doped region. The first doped region doped with a first dopant is disposed in the semiconductor substrate/well. The second doped region doped with a second dopant is disposed in the semiconductor substrate/well, wherein a predetermined distance is maintained between the second doped region and the first doped region. The third doped region doped with the second dopant is disposed in the first doped region. The ESD protection device of the present invention is adapted for solving the reverse recovery problem of the conventional diode during the bipolar type ESD stressing.
Abstract:
An ESD protection device comprising a first switch, a second switch, a discharge unit, and a detection unit. The first switch is coupled to a first power line. The second switch is coupled between the first switch and a second power line. The discharge unit is coupled between the first and second power lines. The detection unit is coupled between the first and second power lines. The first switch is turned on when an ESD event occurs in the first power line. The second switch is turned on when the ESD event does not occur in the first power line.
Abstract:
A silicon controlled rectifier is provided, including: a first conducting-type substrate; two second conducting-type deep wells separately disposed inside the first conducting-type substrate; a gate above the first conducting-type substrate and between the two second conducting-type deep wells; a first source/drain inside one of the two second conducting-type deep wells and at one side of the gate; a second source/drain inside the other of the two second conducting-type deep wells and at the other side of the gate; a first conducting-type doped region inside the first conducting-type substrate; and a first conducting-type doped floating region inside the one of the two second conducting-type deep wells and adjacent to the first source/drain. The first conducting-type doped floating region and the first source/drain constitute an equivalent Zener diode so that the modified silicon controlled rectifier can have a higher holding voltage.
Abstract:
A device includes a plurality of STI regions, a plurality of semiconductor strips between the STI regions and parallel to each other, and a plurality of semiconductor fins over the semiconductor strips. A gate stack is disposed over and crossing the plurality of semiconductor fins. A drain epitaxy semiconductor region is disposed on a side of the gate stack and connected to the plurality of semiconductor fins. The drain epitaxy semiconductor region includes a first portion adjoining the semiconductor fins, wherein the first portion forms a continuous region over and aligned to the plurality of semiconductor strips. The drain epitaxy semiconductor region further includes second portions farther away from the gate stack than the first portion. Each of the second portions is over and aligned to one of the semiconductor strips. The second portions are parallel to each other, and are separated from each other by a dielectric material.