Abstract:
Provided is a intensified sensor array for static electricity having a structure in which a static electricity preventing wiring covers an upper surface of a pixel circuit to cut off static electricity, so when static electricity of a high voltage is momentarily generated, the static electricity induced through the static electricity preventing wiring is discharged, thereby being capable of effectively protecting the pixel circuit of a lower part from the static electricity.
Abstract:
The capacitive fingerprint sensor according to the exemplary embodiments of the present invention includes: a fingerprint sensing electrode Cfp for sensing a human fingerprint; a first transistor T1 in which the amount of currents flowing therethrough changes depending on an output voltage of the fingerprint sensing electrode Cfp; a second transistor T2 in which the amount of currents flowing therethrough changes due to a difference between the currents flowing through the first transistor T1; and a third transistor T3 which resets a gate electrode of the first transistor T1 and provides capacitive coupling with the gate electrode of the first transistor T1 via a pulse signal.
Abstract:
Disclosed is a method for fabricating a thin film transistor. Specifically, the method uses local oxidation wherein a portion of a transparent metal oxide layer is locally oxidized to be converted into a semiconductor layer so that the oxidized portion of the transparent metal oxide layer can be used as a channel region and the unoxidized portions of the transparent metal oxide layer can be used as source and drain electrodes.The method comprises the steps of forming a gate electrode on a substrate and forming a gate insulating layer thereon, forming a transparent metal oxide layer on the gate insulating layer, forming an oxidation barrier layer on the transparent metal oxide layer in such a manner that a portion of the transparent metal oxide layer positioned over the gate electrode is exposed, and locally oxidizing only the exposed portion of the transparent metal oxide layer to convert the exposed portion into a semiconductor layer.
Abstract:
Unevenness detecting apparatus for compensating for threshold voltage and method thereof is provided with a plurality of scan lines and a plurality of data lines and a pixel circuit arranged in each point which the scan lines and the data lines are intersected. The unevenness detecting apparatus for compensating for the threshold voltage and method thereof may accurately sense a state of minute unevenness such as fingerprints by using an active element (e.g., TFT) as an element of which pixel circuit is composed.
Abstract:
Disclosed is an active pixel sensor array, which can reduce the number of elements and the size of capacitors by enabling a reset switching transistor to include a function of an optical sensor and to reset a pixel voltage with a power supply voltage VDD after a gate selection signal is outputted, and to reset a pixel voltage with a power supply voltage VDD by a coupling function in case that a gate selection signal is outputted. The active pixel image sensor having a gate driving circuit and a column driving circuit includes a pixel composed of a voltage supply unit for supplying a signal voltage to the column driving circuit; a gate selection unit for turning on according to a n+1-th gate selection signal and outputting a voltage based on a difference between a pixel voltage and a threshold voltage of the voltage supply unit; a reset switching unit for turning on according to a n+1-th gate selection signal and resetting the pixel voltage with a power supply voltage VDD; and a storage unit and a coupling unit for coupling so as to initialize the pixel voltage to be lower than the power supply voltage VDD just after the n+1-th gate selection signal is outputted.
Abstract:
The present invention relates to an image sensor comprising an amorphous silicon thin-film transistor optical sensor which functions as an image sensor used for an X-ray photography device, a fingerprint recognition apparatus, a scanner, etc., and a method of manufacturing the image sensor. Since the thin-film transistor optical sensor according to the present invention has a high-resistance silicon region by disposing an offset region in a channel region, a dark leakage current of the optical sensor remains in a low level even under a high voltage. Therefore, it is possible to apply a high voltage to the thin-film transistor optical sensor according to the present invention so that the image senor can be sensitive to a weak light. In addition, since the storage capacitance in the image sensor is formed in a double structure, the image sensor has a high value of capacitance. Furthermore, since a lower common electrode is electrically connected to an upper common electrode, the image sensor has a stable structure.
Abstract:
Provided is a intensified sensor array for static electricity having a structure in which a static electricity preventing wiring covers an upper surface of a pixel circuit to cut off static electricity, so when static electricity of a high voltage is momentarily generated, the static electricity induced through the static electricity preventing wiring is discharged, thereby being capable of effectively protecting the pixel circuit of a lower part from the static electricity.
Abstract:
The capacitive fingerprint sensor according to the exemplary embodiments of the present invention includes: a fingerprint sensing electrode Cfp for sensing a human fingerprint; a first transistor T1 in which the amount of currents flowing therethrough changes depending on an output voltage of the fingerprint sensing electrode Cfp; a second transistor T2 in which the amount of currents flowing therethrough changes due to a difference between the currents flowing through the first transistor T1; and a third transistor T3 which resets a gate electrode of the first transistor T1 and provides capacitive coupling with the gate electrode of the first transistor T1 via a pulse signal.
Abstract:
Disclosed are an Organic Light Emitting Diode (OLED) display device having a pixel circuit which use a thin film transistor (TFT) as an active device and a driving method thereof. The OLED display device can constantly obtain luminance of the light emitting elements by elapsed time, because the brightness of the pixel for the signal voltage is not varied by a characteristic variance of the transistor (e.g., a driving element) and the OLED. Accordingly, the OLED display device according to the present invention can minimizes the variance of the pixel brightness due to deterioration of the transistor and the OLED caused by usage for a long time and increase life span of the display device. Further, the OLED display device can display high quality of the image even in case of the high precision display, because it is controlled to flow the current to OLED included in each pixel.
Abstract:
Disclosed are an Organic Light Emitting Diode (OLED) display device having a pixel circuit which use a thin film transistor (TFT) as an active device and a driving method thereof. The OLED display device can constantly obtain luminance of the light emitting elements by elapsed time, because the brightness of the pixel for the signal voltage is not varied by a characteristic variance of the transistor (e.g., a driving element) and the OLED. Accordingly, the OLED display device according to the present invention can minimizes the variance of the pixel brightness due to deterioration of the transistor and the OLED caused by usage for a long time and increase life span of the display device. Further, the OLED display device can display high quality of the image even in case of the high precision display, because it is controlled to flow the current to OLED included in each pixel.