Abstract:
An electro-hydraulic variable valve lift apparatus may includes a housing having a housing protruding portion is formed therewithin, a driving cam, a pump piston which forms a main chamber with the housing, reciprocates within the housing according to rotation of the driving cam, and forms hydraulic pressure within the main chamber, a pump piston elastic portion disposed for elastically supporting the pump piston, an oil pressure controller communicated with the main chamber in order to control hydraulic pressure within the main chamber, a hydraulic piston slidably disposed within the housing and connected with a valve, a multiple orifice unit slidably disposed within the hydraulic piston and forms an auxiliary chamber with the hydraulic piston, and the multiple orifice unit of which an orifice hole communicating the main chamber with the auxiliary chamber is formed thereto, and an orifice unit elastic portion disposed within the auxiliary chamber to elastically support the multiple orifice unit.
Abstract:
Power consumption for maintaining a target valve timing and noise in operation is reduced by a continuously variable valve timing apparatus including a camshaft holder fixed to a camshaft, a cam sprocket, a leadscrew screw-coupled with the camshaft holder and the cam sprocket and is movable so as to rotate the camshaft holder and the cam sprocket in opposite directions, and an operating unit operated by a motor and moves the leadscrew.
Abstract:
A continuously variable valve lift device may include a vibration link having one end eccentrically and rotatably coupled to a rotation shaft, a rocker arm having a middle portion pivotally coupled to the other end of the vibration link, an advance lever having one end coupled to the one end of the rocker arm to select advance or delay, a swivel cam link having one end pivotally coupled to the other end of the rocker arm, and a swivel cam, one end of which is pivotally coupled to the other end of the swivel cam link and the other end of which is pivotally coupled to a stationary shaft to open and close a valve.
Abstract:
A variable tappet may include an outer tappet body, an inner tappet body that is slidably disposed within the outer tappet body and selectively connected with the outer tappet body, a lost motion elastic member that is disposed within the outer tappet body and elastically supports the outer tappet body, and a connecting unit that is slidably disposed within the inner tappet body and selectively connects the outer tappet body and the inner tappet body.
Abstract:
A rod holder configured to operate in a two-stage loading manner allows a rod to be easily received. A minimally invasive system for spinal surgical operation allows a rod to be more accurately and stably received to a pedicle screw inserted into a vertebra by using the rod holder, a rod guide and a rod guide holder. The rod holder may control a rod with three stages: a first loading stage for moving back and fixing a loading unit to fixedly grip the rod; a second loading stage for rotatably gripping the rod; and a rod mounting stage for separating the rod from the rod holder. The spine surgery system includes a pair of rod guides connected to upper ends of a pair of pedicle screws to form a moving path of the rod; a rod holder; and a rod guide holder for defining an insertion path.
Abstract:
An engine in which an exhaust manifold is integrally formed with a cylinder head may include the exhaust manifold in which at least one passage, which is connected to at least one exhaust port disposed in a first cylinder, and at least one passage, which is connected to at least one exhaust port disposed in a second cylinder, are formed, wherein the passage at the first cylinder and the passage at the second cylinder join together to communicate with a first single exhaust outlet.
Abstract:
A variable valve lift apparatus may include an outer tappet body of which a latching portion connecting hole and an outer tappet body guide hole may be formed therewithin, an inner tappet body of which an inner tappet body guide hole may be formed therewithin and slidably disposed within the outer tappet body, a latching portion which may be disposed within the inner tappet body guide hole and selectively coupled to the latching portion connecting hole, a latching portion support pin which guides the latching portion along a longitudinal direction of the inner tappet body guide hole and may be connected to the inner tappet body, a hydraulic pressure chamber, and a plunger which may be slidably disposed in the outer tappet body guide hole and selectively inserts the latching portion into the latching portion connecting hole according to the hydraulic pressure supplied from the hydraulic pressure chamber.
Abstract:
A continuously variable valve timing apparatus may include an end plate connected to a camshaft, a drive sprocket rotating the end plate, a first friction plate disposed to be coaxial to the end plate, a second friction plate disposed to be coaxial to the end plate, a first brake selectively braking the first friction plate, a second brake selectively braking the second friction plate, and a control gear portion which changes relative phase between the end plate and the drive sprocket according to braking of the first friction plate or the second friction plate.
Abstract:
A variable valve lift device equipped with a swing arm variably lifting an exhaust valve or an intake valve may include an outer body in which a mounting groove is formed in the middle portion thereof, an inner body mounted inside the mounting groove of the outer body and with a rear end thereof pivotally-connected to the outer body in the outer body, and a latching portion formed in the outer body and the inner body and fixing or releasing a front end portion of the inner body to the outer body.
Abstract:
An electric continuously variable valve timing apparatus may include a cam sprocket, a camshaft rotatably connected with the cam sprocket, a motor portion, a lead screw portion which may be disposed within the motor portion, may be screwed-engaged with the motor portion, and moves along length direction of the camshaft according to operations of the motor portion, and a camshaft holder rotatably connecting the lead screw portion and the cam sprocket, wherein the camshaft holder moves along length direction of the camshaft according to the movement of the lead screw portion and varies relative phase angle between the cam sprocket and the camshaft for controlling valve timing.