摘要:
A method and a system for supporting multiple display adapters in the WDDM architecture are provided. A driver wrapper serves as the interface between the OS and the display drivers. The driver wrapper hides the display drivers from the knowledge of the OS and provides the standard display driver interface (DDI) to the OS. In the view of the OS, the driver wrapper is the single common driver which receives requests from the OS. The driver wrapper dispatches the requests from the OS to the display drivers and relays responses from the display drivers to the OS. The driver wrapper of the present invention is compatible with multiple distinct display drivers.
摘要:
A method and a system for supporting multiple display adapters in the WDDM architecture are provided. A driver wrapper serves as the interface between the OS and the display drivers. The driver wrapper hides the display drivers from the knowledge of the OS and provides the standard display driver interface (DDI) to the OS. In the view of the OS, the driver wrapper is the single common driver which receives requests from the OS. The driver wrapper dispatches the requests from the OS to the display drivers and relays responses from the display drivers to the OS. The driver wrapper of the present invention is compatible with multiple distinct display drivers.
摘要:
A method executed in a first radio base station located in a first cell is provided for acquiring scheduling information associated with a second radio base station located in a neighboring cell, where the method comprises listening, via an air interface, to scheduling information transmitted, via a downlink control channel, from the second radio base station; decoding the received scheduling information, and providing the decoded scheduling information to an uplink receiver and/or uplink scheduler associated with the radio base station, such that the uplink receiver and/or uplink scheduler will be able to enhance its performance on the basis of the received scheduling information. An arrangement for executing the suggested method is also provided.
摘要:
The present disclosure relates to a receiving node, and to a related method for determining when to apply a turbo equalization mode to compensate for Inter-Symbol Interference in a radio signal received over a radio channel from a transmitting node. The method comprises decoding the received radio signal into a decoded signal, determining a current error level in the decoded signal, predicting a turbo equalization gain based on instantaneous channel information of the radio channel and deciding whether to apply the turbo equalization mode depending on the predicted turbo equalization gain and the determined current error level in the decoded signal.
摘要:
The invention relates to a method in a receiving communication node for performing channel estimation on a signal received over a channel from a transmitting communication node. The receiving and transmitting communication nodes are comprised in a radio communications network. The receiving communication node receives the signal from the transmitting communication node, filters the signal by applying matched filter to the received signal in a matched filter process resulting in an estimated channel, transforms the estimated channel from a frequency domain to a discrete cosine transform domain in a discrete cosine transformation process, truncates the transformed estimated channel by applying a sloped window truncation function of an adaptive length onto the transformed estimated channel, wherein the adaptive length in the discrete cosine transform domain is calculated based on channel state information, and transforms the truncated transformed estimated channel from the discrete cosine transform domain to the frequency domain in an inverse discrete cosine transformation process resulting in a channel estimate of the channel estimation.
摘要:
At a node of a wireless network, equalization operations performed on signals received from a transmitter are adaptively switched to be equalized by an iterative turbo receiver or a linear receiver. A theoretical expression of a post-equalization SINR of a capacity-achieving receiver is used to estimate the post-equalization SINR performance of the turbo receiver. The estimated post-equalization SINR performance is then used as a basis to determine whether the received signal is to be equalized by the turbo receiver or the linear receiver.
摘要:
A method and system for selecting an algorithm for channel estimation in a wireless communication system are disclosed. According a parameter indicative of an accuracy of a channel estimation algorithm is determined. A selection between a first channel estimation algorithm and a second channel estimation algorithm is made based on the determined parameter.
摘要:
A method comprises determining a first and a second sub-carrier associated with a channel, and multiplying a signal received on the first sub-carrier with a first number to form a first resulting signal. The first number multiplied with a known signal transmitted by a second transmitting node on the first sub-carrier equals a constant value. A signal received on the second sub-carrier is multiplied with a second number to form a second resulting signal. The second number multiplied with the known signal transmitted by the second transmitting node on the second sub-carrier equals the constant value. The second resulting signal is subtracted from the first resulting signal to obtain a signal for which interference from the second transmitting node is suppressed, and the channel is estimated based on the obtained signal.
摘要:
A method and system for selecting an algorithm for channel estimation in a wireless communication system are disclosed. According a parameter indicative of an accuracy of a channel estimation algorithm is determined. A selection between a first channel estimation algorithm and a second channel estimation algorithm is made based on the determined parameter.
摘要:
A method comprises determining a first and a second sub-carrier associated with a channel, and multiplying a signal received on the first sub-carrier with a first number to form a first resulting signal. The first number multiplied with a known signal transmitted by a second transmitting node on the first sub-carrier equals a constant value. A signal received on the second sub-carrier is multiplied with a second number to form a second resulting signal. The second number multiplied with the known signal transmitted by the second transmitting node on the second sub-carrier equals the constant value. The second resulting signal is subtracted from the first resulting signal to obtain a signal for which interference from the second transmitting node is suppressed, and the channel is estimated based on the obtained signal.