Abstract:
Embodiments of this application provide a method and an apparatus for transmitting a physical layer protocol data unit. The method includes: generating a synchronization header field based on a first sequence or a third sequence, where a side lobe of a periodic cross-correlation function of the first sequence and a second sequence is a constant value, the first sequence is a binary sequence consisting of 1 and 0, the second sequence is a binary phase shift keying sequence corresponding to the first sequence, a side lobe of a periodic autocorrelation function of the third sequence is a constant value, and the third sequence is a binary phase shift keying sequence consisting of 1 and −1; and sending a physical layer protocol data unit PPDU on a target channel, where the PPDU includes the synchronization header field.
Abstract:
Techniques and apparatus for transmission and reception with partial allocation in orthogonal frequency division multiple access (OFDMA)/single-carrier frequency division multiple access (SC-FDMA) systems are provided. One technique includes determining first parameter(s) to apply to transmission/receive processing of a signal, based in part on a resource allocation for the signal. The resource allocation is partitioned out of a larger system bandwidth. Second parameter(s) to apply to the transmission/receive processing are determined based at least in part on the first parameter(s). Transmission/receive processing of the signal is performed in accordance with the first and second parameters.
Abstract:
Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
Abstract:
The invention relates to a system for processing an electromagnetic input signal in which processing circuitry may be used to produce a bounded phase signal, such as by calculating an n-bit 2's compliment number in the range of [−1, 1] from phase sample information for an input wave; and producing an unwrapped phase difference signal from the bound phase signal, such as by taking a 2's compliment subtraction using another wrapped phase signal from previous phase sample information. A corrected phase signal may also be used by taking a 2's complement addition using the bounded phase signal, wherein the unwrapped phase difference signal is produced using the corrected phase signal.
Abstract:
Disclosed herein is a method and apparatus used to add high-performance phase modulation to an applied input signal with data or clock edges which overcomes limitations of range, bandwidth and operating data rate by utilizing parallel devices to singularly modulate rising and falling edges separately and then re-add them together. In an embodiment of this invention, T-type (toggle) flip flops and exclusive-OR gates are used to achieve very high-performance results.
Abstract:
The indicated test method makes it possible to test clock paths via which a reference clock is transmitted to synchronize network elements in a synchronous digital telecommunications system. To that end the reference clock is marked at the start of the clock path being tested by modulating information thereon. It is observed at the end of the clock path being tested whether the reference clock contains the information modulated thereon at the start. This information is configured so that it does not impair the operation of the synchronous digital telecommunications system. A network element is furthermore indicated, which is in a position to produce by itself the phase modulation required for a test, through its clock generator.
Abstract:
A circuit for discriminating the modulation type of a received signal capable of discriminating the modulation type at high speed. This circuit includes: a clock recovery circuit for recovering a data clock from received data; a phase difference detector for detecting a phase difference between the data clock recovered by the clock recovery circuit and the received data; a deviation calculation circuit for calculating a deviation between the phase difference detected by the phase difference detector and a deviation reference value preset in accordance with a modulation type; a squaring circuit for squaring the deviation calculated by the deviation calculation circuit; an average value calculation circuit for calculating an average value of a predetermined plurality number of consecutive ones of the square output calculated by the squaring circuit; and a comparator for comparing the average value calculated by the average value calculation circuit with a predetermined decision reference value and outputting a discrimination signal in accordance with the comparison results.
Abstract:
A method of transferring a data message from a remote unit to a central location is provided. A plurality of data channels is selected for transmitting the data message from the remote unit to the central location. At least one random transmit time is generated for transmitting the data message for each of the plurality of data channels. The data message is transmitted over the plurality of data channels at the transmit times. An apparatus for transferring a data message from a remote unit to a central location is also provided.
Abstract:
A method for automatically selecting optimum frequencies for transmitting data from remote terminals upstream to a system manager is provided. The system manager initially selects a set of frequencies from a larger set of available frequencies and transmits a command downstream to each remote terminal indicating which frequencies to use. Each remote terminal transmits data messsages on each selected frequency in response to addressed commands generated by the system manager. The system manager receives and counts the data messages on each of the frequencies, and after a statistically significant number of messages are received, removes from use the frequency with the lowest number of data messages received. This frequency is replaced with either (1) a previously untried frequency, or if all frequencies have been tried, (2) a previously tried frequency with the highest number of data messages received. In a preferred embodiment, new frequencies are removed from use and added to use only when the number of data messages received and the received signal level on a particular frequency falls within certain predetermined ranges. In another embodiment, the transmission level for a particular frequency is recalibrated when the number of data message received and the received signal level falls within other predetermined ranges. In a further embodiment, two or more sets of optimum frequencies are automatically chosen for different times during the day and the system manager is able to immediately switch between these sets at the appropriate times.
Abstract:
There is disclosed a high speed data transmission system for transmitting a binary data signal over a communications path. The binary data signal is clocked at a given period. The system comprises encoded means responsive to a binary NRZ input data signal to provide at an output an encoded digital signal having time periods greater than multiples of the clock period, whereby the encoded signal occupies a lesser effective bandwidth than the NRZ signal would occupy. There are balanced modulator means having an input responsive to the encoded signal and another input adapted to receive a carrier frequency to provide at an output a double sideband suppressed carrier signal. Coupled to the output of the balanced modulator are narrow bandwidth filtering means including first low pass and second high pass parallel filter paths each having a common input terminal coupled to the output of the modulator. The ouputs of the low and high pass filters are symmetrically combined to provide a narrow single sideband signal for transmission characterized in that transitions between binary levels in said encoded signal are manifested by distinct phase changes in said single sideband signal.