摘要:
A self-regulating valve device adapted for use with respiratory equipment of a type which produces a pressurized flow of breathing gas. The valve device affords automatic access to the ambient atmosphere in the event of respiratory equipment malfunction and includes a primary inlet, a secondary inlet and an outlet. The primary inlet is adapted for connection to a ported exhalation valve which, in turn, is connected to one end of an elongated flexible tube, the opposite end of which is connected to a gas flow generator. The outlet, in turn, is connected to the inlet of an oral, nasal or oral/nasal respiratory mask respectively adapted to cover the patient's mouth, nose or mouth and nose. The valve device further comprises a pressure-responsive valve element for regulating gas flow into the inlet of the respiratory mask. In accordance with a further aspect of the invention, the valve device may be used in conjunction with a tracheotomy tube or an endotracheal tube or similar patient interface means.
摘要:
A method of automatically controlling the temperature of a patient circuit (56, 58) of a pressure support system (50) includes determining (directly measuring or estimating/deriving) one or more environmental parameters relating to environmental conditions around the pressure support system, such as ambient temperature and/or ambient humidity, determining a desired temperature based on at least the one or more environmental parameters, and controlling the operation of a heating apparatus (70) operatively associated with the patient circuit based on the desired temperature. Also, a pressure support system implementing the method.
摘要:
An airway pressure support system (2) that includes a pressure generating device (4) structured to produce a flow of gas and a component (8) such as a patient interface device (8) structured to be selectively coupled to the pressure generating device (4), wherein the pressure generating device (4) and the component (8) are structured to enable the component (8) to be to wirelessly identified by the pressure generating device (4) only when the component (8) is coupled to the pressure generating device (4). Also, a method of identifying a component (8) in an airway pressure support system (2) that includes steps of coupling the component (8) to a pressure generating device (4) of the airway pressure support system (2) and enabling the component (8) to be to wirelessly identified by the pressure generating device (4) only when the component (8) is coupled to the pressure generating device.
摘要:
A respiratory therapy device is configured, e.g. by a care provider, such that a second therapy mode different from the current therapy mode is unlocked, under predetermined circumstances and a third therapy mode different from the current and the second therapy mode is unlocked, under predetermined circumstances. The user of a given respiratory therapy device may activate the unlocked second or third therapy mode. The second or the third therapy mode may expire after a predetermined amount of usage, and be deactivated.
摘要:
A flow regulating system including a valve and a method for maintaining a constant gas flow rate at varying gas pressure by means of differential gas pressure applied to opposed sides of a valve diaphragm.
摘要:
A swivel exhaust conduit for rotatably connecting a patient mask to the delivery conduit of a positive pressure air supply. The swivel exhaust conduit design provides an exhaust port that utilizes the rotating bearing of the swivel conduit's rotating two-piece design for permitting and directing exhaust of CO.sub.2 laden air. A baffle chamber formed in the clearance of the two pieces provides an area where noise is reduced. As CO.sub.2 laden exhaust exits the swivel exhaust conduit, it is directed away from the patient mask and down the outside of the delivery conduit via a slit pattern on the swivel conduit.
摘要:
A flow regulating system including a valve and a method for maintaining a constant gas flow rate through a patient circuit to ambient exhaust at varying gas pressure by means of differential gas pressure applied to opposed sides of a valve diaphragm.
摘要:
Passive heating may be provided to a flexible tube (202) configured to deliver respiratory gas to a patient. A flexible sheathing body (206, 208, 210) may be removably attached to the flexible tube so as to surround the flexible tube and extend along the flexible tube. A passive heating element (218, 220, 222) integrated with the flexible sheathing body may store non-electrical energy and release the stored non-electrical energy as thermal energy to heat the flexible tube.
摘要:
A method of automatically controlling the humidity of a gas stream of a pressure support system (50) during use of the system is provided. The method includes receiving a first humidification level, and controlling operation of a humidifier (68) based on the first humidification level and at least one of: (i) one or more environmental parameters relating to environmental conditions around the pressure support system, (ii) one or more gas stream parameters relating to a gas stream output by the pressure support system to a patient circuit (56, 58), (iii) one or more respiratory demand parameters of a user of the pressure support system, and (iv) one or more operating parameters of the pressure support system that effect a flow rate that is generated by a pressure generating system (52, 60) of the pressure support system.
摘要:
A method of automatically controlling the humidity of a gas stream of a pressure support system (50) during use of the system is provided. The method includes receiving a first humidification level, and controlling operation of a humidifier (68) based on the first humidification level and at least one of: (i) one or more environmental parameters relating to environmental conditions around the pressure support system, (ii) one or more gas stream parameters relating to a gas stream output by the pressure support system to a patient circuit (56, 58), (iii) one or more respiratory demand parameters of a user of the pressure support system, and (iv) one or more operating parameters of the pressure support system that effect a flow rate that is generated by a pressure generating system (52, 60) of the pressure support system.