摘要:
Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a slurry containing inorganic particles dispersed therein and a solution of a binder polymer in a solvent, and coating the slurry on at least one surface of a porous substrate to form a first porous coating layer, and (S2) electroprocessing a polymer solution on the outer surface of the first porous coating layer to form a second porous coating layer. The first porous coating layer formed on at least one surface of the porous substrate is composed of a highly thermally stable inorganic material to suppress short-circuiting between an anode and a cathode even when an electrochemical device is overheated. The second porous coating layer formed by electroprocessing improves the bindability of the separator to other base materials of the electrodes.
摘要:
A jelly-roll type electrode assembly is disclosed. The jelly-roll type electrode assembly includes an anode, a cathode, and separators interposed between the anode and the cathode and having a greater length than width. Each of the separators is longer than the anode and the cathode. Each of the separators has a porous substrate and porous coating layers formed on both surfaces of the porous substrate. The porous coating layers include a mixture of inorganic particles and a binder polymer. The porous coating layers are formed only in areas where the separators are in contact with the anode and the cathode. The porous coating layers enhance the heat resistance of the separators. Due to the enhanced heat resistance, the separators can prevent the performance of a battery from deteriorating. In addition, the porous coating layers can be prevented from being separated from the separators during battery assembly processing.
摘要:
A method for manufacturing an electrode may include (S1) preparing a sol solution containing a metal alkoxide compound, and (S2) forming a porous non-woven coating layer of an inorganic fiber by electroemitting the sol solution onto an outer surface of an electrode active material layer formed on at least one surface of a current collector. The porous non-woven coating layer formed on the outer surface of the electrode active material layer may be made from an inorganic fiber having excellent thermal stability. When an electrochemical device is overheated, the porous non-woven coating layer may contribute to suppression of a short circuit between a cathode and an anode and performance improvement of an electrochemical device due to uniform distribution of pores.
摘要:
Disclosed is a method for manufacturing a separator for an electrochemical device. The method contributes to formation of a separator with good bondability to electrodes and prevents inorganic particles from detaching during an assembling process of an electrochemical device.
摘要:
Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and sequentially coating the slurry on the porous substrate through a first discharge hole and a non-solvent incapable of dissolving the second binder polymer on the slurry through a second discharge hole adjacent to the first discharge hole, and (S3) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
摘要:
Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a slurry containing inorganic particles dispersed therein and a solution of a binder polymer in a solvent, and coating the slurry on at least one surface of a porous substrate to form a first porous coating layer, and (S2) electroprocessing a polymer solution on the outer surface of the first porous coating layer to form a second porous coating layer. The first porous coating layer formed on at least one surface of the porous substrate is composed of a highly thermally stable inorganic material to suppress short-circuiting between an anode and a cathode even when an electrochemical device is overheated. The second porous coating layer formed by electroprocessing improves the bindability of the separator to other base materials of the electrodes.
摘要:
A jelly-roll type electrode assembly is disclosed. The jelly-roll type electrode assembly includes an anode, a cathode, and separators interposed between the anode and the cathode and having a greater length than width. Each of the separators is longer than the anode and the cathode. Each of the separators has a porous substrate and porous coating layers formed on both surfaces of the porous substrate. The porous coating layers include a mixture of inorganic particles and a binder polymer. The porous coating layers are formed only in areas where the separators are in contact with the anode and the cathode. The porous coating layers enhance the heat resistance of the separators. Due to the enhanced heat resistance, the separators can prevent the performance of a battery from deteriorating. In addition, the porous coating layers can be prevented from being separated from the separators during battery assembly processing.
摘要:
Disclosed is a method for manufacturing a separator for an electrochemical device. The method contributes to formation of a separator with good bondability to electrodes and prevents inorganic particles from detaching during an assembling process of an electrochemical device.
摘要:
Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and coating the slurry on at least one surface of the porous substrate, (S3) spraying a non-solvent incapable of dissolving the second binder polymer on the slurry, and (S4) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
摘要:
The present invention concerns the dynamics and yielding of transient solutions for the film-blowing process. After solving the governing equations that takes into consideration the viscoelasticity and cooling characteristics of the film, a coordinate transformation was done to change the free-end-point problem into a fixed-end-point one. Then finally, by introducing Newton's method along with OCFE (Orthogonal Collocation on Finite Elements), a transient solution for the process was obtained.