Abstract:
An optical module includes a stem, an optical element, data signal lead pins, a printed circuit board, and a post portion. The optical element is mounted on one surface of the stem. The data signal lead pins are connected to the optical element, and protrudes through the other surface of the stem. The printed circuit board has one surface on which data signal transmission lines for contact with the data signal lead pins are formed and the other surface on a part of which a stiffener is formed to protrude. The post portion protrudes from the other surface of the stem, supports the printed circuit board while in close contact with the stiffener such that the data signal lead pins can contact the data signal transmission lines while being disposed linearly above the data signal transmission lines, and includes a coupling portion to be coupled with the stiffener.
Abstract:
An optical module includes a stem, an optical element, data signal lead pins, a printed circuit board, and a post portion. The optical element is mounted on one surface of the stem. The data signal lead pins are connected to the optical element, and protrudes through the other surface of the stem. The printed circuit board has one surface on which data signal transmission lines for contact with the data signal lead pins are formed and the other surface on a part of which a stiffener is formed to protrude. The post portion protrudes from the other surface of the stem, supports the printed circuit board while in close contact with the stiffener such that the data signal lead pins can contact the data signal transmission lines while being disposed linearly above the data signal transmission lines, and includes a coupling portion to be coupled with the stiffener.
Abstract:
An optical transceiver which can effectively reduce optical output jitter when an error is made during designing and manufacturing of a printed circuit board (PCB), and a method of controlling optical output jitter using the optical transceiver are provided. The optical transceiver includes a transmitter unit including an equalizing (EQ) filter which can reduce jitter of a high speed electric signal; a control circuit which controls the EQ filter; a receiver unit which receives an optical signal; and a micro-controller which controls the transmitter unit and the receiver unit. Further included in the optical transceiver is an active type or passive type EQ filter and, in the case of the active type, the control circuit is used to control the filter, in order to compensate for high-frequency component of a high speed electric signal in the transmitter unit in order to reduce reflection or loss on the PCB, and thus deterministic optical output jitter occurring due to Inter-Symbol Interference (ISI) can be reduced.
Abstract:
Provided are a multiplexing and demultiplexing apparatus and method of a multi-wavelength optical signal that may dispose each of thin film filters in a location where a zigzag reflection occurs in a zigzag optical path, and thereby multiplex or demultiplex a multi-wavelength optical signal using the thin film filters. Each of the thin film filters may transmit an optical signal having a predetermined wavelength which is incident at a predetermined incidence angle, and reflect a remaining wavelength optical signal at a predetermined reflection angle.
Abstract:
Provided are an optical transponder that interfaces a multiprotocol signal and a method of interfacing a multiprotocol signal. The optical transponder includes: an optical transceiver, which optical/electrical converts and multiplexes/demultiplexes an input signal; a reception clock generator, which generates a clock on a reception path; a transmission clock generator, which generates a clock on a transmission path; an optical transport hierarchy (OTH) framer, which processes an OTH signal when the input signal is the OTH signal; a synchronous digital hierarchy (SDH)/synchronous optical network (SONET) framer, which processes an SDH/SONET signal or a gigabit Ethernet (GbE) when the input signal is the SDH/SONET signal or the GbE signal; and a controller which controls the optical transceiver, the reception clock generator, the transmission clock generator, the OTH framer, and the SDH/SONET framer according to the type of the input signal. Accordingly, one optical transponder can receive various types of protocol signals, and thus different optical transponders are not separately required according to a type of a connected signal.
Abstract:
Disclosed herein is an apparatus for controlling a decision threshold voltage to an optical receiver, which is capable of automatically controlling the decision threshold voltage to the optical receiver appropriately to signal level decision on the basis of a low-frequency band signal component of an output signal from the optical receiver. The apparatus is adapted to control the level of the decision threshold voltage to the optical receiver, which converts an input optical signal into an electrical signal. To this end, the apparatus comprises a voltage detector for branching off part of the output signal from the optical receiver and detecting a corresponding voltage, a differential comparator for comparing the voltage detected by the voltage detector with a reference voltage inputted thereto and outputting the resulting differential voltage, a low pass filter for filtering the differential voltage from the differential comparator at a predetermined low frequency band and supplying the resulting voltage as the threshold voltage to the optical receiver, and a voltage controller for controlling the reference voltage to the differential comparator on the basis of a differential voltage between the threshold voltage from the low pass filter and a predetermined voltage corresponding to a predetermined minimum bit error rate.
Abstract:
A memory card includes a substrate and a resin-molded layer. The substrate includes contact pads that are on a second face thereof for communication with a card reader. Semiconductor chips are on a first face of the substrate and electrically connected to the contact pads through bonding wires and circuit wiring. The resin-molded layer is on the first face and covers the chips.
Abstract:
The present invention provides a memory card having a reduced size as much as that of the package. The memory card includes electrical contact pads disposed in a single row on one end of the memory card. The memory card further comprises a card base and a semiconductor package. The card base has a first surface and a second surface, the first surface having a cavity formed thereon. The semiconductor package comprises a substrate, memory chips, and a molding resin layer, and is mounted on the cavity so that the external contact pads are exposed. Circuit wirings are formed on an inner surface of the substrate and electrically connected to the external contact pads that are formed on an outer surface of the substrate.
Abstract:
An optical transceiver includes: a transmission unit configured to convert a first electrical signal into a first optical signal and transmit the converted first optical signal; a first power supply unit configured to supply power to the transmission unit; and a controller configured to control the first power supply unit, wherein the controller controls an operation of the first power supply unit according to whether or not the first electrical signal is inputted to the transmission unit.
Abstract:
An optical transmitter is provided which optimizes DC bias voltage input to an optical modulator employing a duo-binary modulation scheme. The optical transmitter including a signal combiner which converts an electrical signal for optical transmission into a high-speed electrical signal, and an optical modulator which receives and modulates the high-speed electrical signal from the signal combiner further includes a frequency divider to divide frequency of a sinusoidal watchdog clock signal from the signal combiner and to output the divided signal to be added to direct current (DC) bias voltage input to the optical modulator; and a bias voltage modifier to adjust the DC bias voltage by analyzing the modulated electrical signal from the optical modulator. Accordingly, it is possible to conveniently optimize the DC bias voltage with a simple design.