摘要:
The present invention relates to a quantitative method for detecting yessotoxins in fishery products based on the activation the toxin produces on cellular phosphodiesterases and the therapeutic use of this activation. The cellular target of yessotoxin (YTX) and its analogs is the activation of phosphodiesterases (PDEs). The PDEs-YTX bond produces a measurable signal. The bond can be quantified by means of an affinity biosensor or by fluorescence. The biosensor detects biomolecular interactions and allows determining the presence of YTX due to its interaction with PDEs. The variations in the degradation rate of the fluorescent derivative anthraniloyl-cAMP are determined by means of plate fluorescence. The rate at which the PDEs degrade this molecule increases in the presence of YTX. YTX inhibits immunological activation of mastocytes in rats and induces a cytotoxic effect in human hepatocarcinoma cells, which implies two therapeutic uses of YTXs as an antiallergic and antitumor compound.
摘要:
The present invention provides a long-chain polyether polyol having a number average molecular weight of more than about 1,200 g/mole and produced by alkoxylating an initiator with an alkylene oxide in the presence of a basic catalyst having at least one cation thereof chelated with about 0.5 to about 20 wt. % of a polyoxyethylene-containing compound having a molecular weight of less than about 10,000 g/mole, wherein the weight percentage is based on the weight of the long-chain polyether polyol. The long-chain polyether polyols of the present invention may find use in providing flexible polyurethane foams and non-cellular polyurethanes.
摘要:
The present invention provides a process for the double metal cyanide (DMC)-catalyzed production of low unsaturation polyethers from boron-containing starters. The polyethers produced by the inventive process may be reacted with one or more isocyanates to provide polyurethane products including coatings, adhesives, sealants, elastomers, foams and the like. The inventive process may be used to prepare fuel additives from C9-C30 boron-containing polyethers, more particularly from C13 alcohols.
摘要:
The present invention provides polyurethane foams and elastomers made with an alkoxylated vegetable oil hydroxylate replacing at least a portion of the typically used petroleum-based polyol(s). Also provided are processes for making the inventive foams and elastomers and for making alkoxylated vegetable oil hydroxylates. The alkoxylated vegetable oil hydroxylates are environ mentally-friendly, bio-based polyols which advantageously also offer the potential of improved hydrophobicity in polyurethane foams and elastomers. The inventive polyurethane foams and elastomers may find use in a wide variety of products such as automobile interior parts, polyurethane structural foams, floor coatings and athletic running tracks.
摘要:
The present invention provides a long-chain polyether polyol having a number average molecular weight of greater than about 500 g/mole and produced by alkoxylating a polyoxyethylene-containing initiator with an alkylene oxide in the presence of a basic catalyst having at least one cation thereof chelated by the polyoxyethylene-containing initiator. The inventive long-chain polyether polyols may be used to provide flexible polyurethane foams and non-cellular polyurethanes.
摘要:
The present invention provides a long-chain polyether polyol having a number average molecular weight of greater than about 1,200 g/mole and produced by alkoxylating an initiator with an alkylene oxide in the presence of a basic catalyst having at least one cation thereof chelated with a non-linear polyoxyethylene-containing compound having a functionality of at least about three. The long-chain polyether polyols of the present invention may find use in providing flexible polyurethane foams and non-cellular polyurethanes.
摘要:
The present invention provides a process for preparing a polymer polyol (PMPO) by alkoxylating a starter compound(s) having active hydrogen atoms in the presence of a double metal cyanide (DMC) catalyst, radical initiator(s) and optionally PMPO stabilizers and simultaneously polymerizing unsaturated monomer(s) with radical initiator(s). The polymer polyols (PMPOs) made by the inventive process may find use in the preparation of polyurethane foams and elastomers.