Abstract:
The present invention relates to a nitrogen-containing diesel solidification point depressant composition, and preparation and application thereof. The nitrogen-containing diesel solidification point depressant composition includes the following components in percentage by weight: 10-40% of monoisopropanolamine; 10-40% of cyclohexane; 0-20% of polyethylene glycol; and 40-60% of N-tetradecyl methacrylamide-tetradecyl methacrylate. After the prepared diesel solidification point depressant composition is added to commercially available 0 #diesel, a solidification point and a cold filter plugging point of the diesel are respectively depressed by 21-25° C. and 9-13° C.
Abstract:
The invention provides dispersions comprising
I) at least one oil-soluble polymer effective as a cold flow improver for mineral oils, II) at least one organic, water-immiscible solvent, III) a dispersant comprising, based on the total amount of dispersant,
a) 10-90% by weight of a salt of an ethercarboxylic acid and b) 90-10% by weight of a nonionic surfactant,
IV) water and V) at least one organic, water-miscible solvent.
Abstract:
Methods and systems for manufacturing emulsified fuel include: adding surfactant to fuel; blending the surfactant and fuel together in a first mixing chamber for a first mixing period; subjecting the blended surfactant and fuel mixture to a dwell period following the first mixing period; introducing water into the blended surfactant and fuel mixture following the dwell period; and blending the surfactant, fuel and water together in a second mixing chamber for a second mixing period. The surfactant is selected to exhibit an HLB rating in the range of 8.75 to 8.83.
Abstract:
A process by which the raw material, a gas comprising mainly hydrogen, carbon monoxide and carbon dioxide, is introduced into a first reactor together with a catalyst, in which one or more reactions take place that produce methanol or dimethyl ether or both, which are then introduced into a second reactor adding oxygen and a catalyst and producing formaldehyde and a minority of dimethyl ether, and where there may be an excess of water, such water being extracted from the process and the remaining products being introduced into the third reactor with, optionally, an additive, and such raw material is exposed to catalysts and under an atmosphere at medium temperature and pressure, in order to produce three or four groups of chemical reactions that, after extracting most of the water that is generated as a residue during the process, produces as a result a liquid multifunctional product that can be used as a solvent, a foaming agent or an oxygenated fuel; said product, normally a fluid, comprises polyoxymethylene dimethyl ethers with molecular formula CH3O(CH2O)nCH3 wherein n has a value between 1 and 7.
Abstract:
New, highly effective substantially pure Mannich detergents for use in hydrocarbon fuels reduce engine deposits in spark and compression ignition internal combustion engines. The Mannich condensation reaction products are obtainable by reacting: (i) a polyamine having primary amino groups, (ii) a hydrocarbyl-substituted hydroxyaromatic compound, and (iii) an aldehyde, wherein the reaction is conducted at in a molar ratio of (i):(ii):(iii) of approximately 1:2:3. The Mannich detergent compounds may be dispersed in a liquid carrier to provide a fuel additive concentrate for hydrocarbon engine fuels which effectively control engine deposit formation in intake valves, port fuel injectors and combustion chambers.
Abstract:
A fuel additive composition comprises (a) a Mannich reaction product and (b) a polyetheramine where the weight ratio on an actives basis of component (a) to component (b) is 1:4-10. A fuel composition and a method for removing intake valve deposits and combustion chamber deposits in a spark-ignited internal combustion engine comprise the fuel additive composition which is very effective in removing the deposits.
Abstract:
The present disclosure relates to novel anti-wear additives for diesel or biodiesel fuels having a sulphur content less than or equal to 500 ppm by mass. These novel additives will also improve the lacquering resistance of the higher-grade diesel or biodiesel fuels having a sulphur content less than or equal to 500 ppm by mass.
Abstract:
The invention provides an emulsification technique which permits the formation of functional oil/water or functional granules/water emulsion systems excellent in thermal stability and long-term stability and which can attain the emulsification independent of required HLB of the functional oils, and the dispersion independent of surface properties of the functional granules. In the technique is used an emulsifying dispersant comprising, as the main component, vesicles formed from an amphiphilic substance capable of self-assembly or an emulsifying dispersant comprising single particles of a biopolymer as the main component. The particles made from amphiphilic substances capable of self-assembly are used. The amphiphilic substances are selected from among polyoxyethylene-hydrogenated castor oil derivatives represented by the general formula (1) wherein the average number of added ethylene oxide molecule is 5 to 15, dialkyldimethyl-ammonium halides wherein the chain length of the alkyl or alkenyl is 8 to 22, and phospholipids or phospholipid derivatives. According to the invention a three-phase structure composed of an aqueous phase, an emulsifying dispersant phase and an oil phase is formed on the surface of an emulsion to give an emulsion (such as emulsion fuel) excellent in thermal stability and long-term stability.
Abstract:
The use of a polyalkylene glycol of formula HO-(A-O)p—(CH2CH2—O)m-(A-O)q—H wherein A is a C3- to C20-alkylene group or a mixture of such alkylene groups, m is a number of from 2 to 100 and p and q are each numbers of from 1 to 100, as an additive in a fuel.
Abstract:
Additive composition for use in a fuel or lubricant formulation, comprising an active substance in an inclusion complex with a modified cyclodextrin of formula (I): wherein n is an integer from 6 to 20, and R1, R2 and R3 are each independently selected from hydrogen, optionally substituted alkyl, optionally substituted aryl and carbonyl, provided that R1, R2 and R3 are not all hydrogen. Also provided is a fuel or lubricant formulation comprising the additive composition, a premix for use in preparing the additive composition, and the use of a modified cyclodextrin (I) as a vehicle for an active substance in an additive composition or in a fuel or lubricant formulation.