Abstract:
The invention provides a method and an apparatus for a continuous non-invasive and non-obstrusive monitoring of blood pressure. The method comprises the steps of: a) measuring the value (PW) of a Pulse Wave parameter, equal to or derived from the Pulse Wave Velocity (PWV) parameter of a segment of the arterial tree of a subject, b) measuring the value (CO) of the Cardiac Output parameter, and c) determining the value (BP) of the blood pressure that satisfies B P = arg min BP d ( P W , ( C O , B P ) ) , where PW is the value measured in step a), (CO, BP) corresponds to a predicted value of the Pulse Wave parameter computed according to a model of the segment of the arterial tree, the value (CO) of the Cardiac Output parameter measured in step b) and an hypothesized value of the blood pressure.
Abstract:
The present disclosure relates to a method for estimating blood constituent concentration of a user under low perfusion conditions using a spectrophotometry-based monitoring device; the method comprising: measuring a plurality of photoplethysmographic (PPG) signals; measuring a cardio-synchronous (CV) signal; detecting an instantaneous heart rate and determining a heart rate variability from the CV signal; selecting reliable projected PPG signals; estimating a value of said blood constituent concentration from the magnitude of said reliable projected PPG signals. The disclosed method requires diminished computational load compared to conventional methods based on frequency domain approach as FFT or DCT. The disclosure also pertains to a monitoring device for estimating blood constituent concentration in tissue under low perfusion of a user.
Abstract:
The present disclosure relates to a method for estimating blood constituent concentration of a user under low perfusion conditions using a spectrophotometry-based monitoring device; the method comprising: measuring a plurality of photoplethysmographic (PPG) signals; measuring a cardio-synchronous (CV) signal; detecting an instantaneous heart rate and determining a heart rate variability from the CV signal; selecting reliable projected PPG signals; estimating a value of said blood constituent concentration from the magnitude of said reliable projected PPG signals. The disclosed method requires diminished computational load compared to conventional methods based on frequency domain approach as FFT or DCT. The disclosure also pertains to a monitoring device for estimating blood constituent concentration in tissue under low perfusion of a user.
Abstract:
The present disclosure concerns a method for determining a heart-lung interaction factor of a subject, comprising: measuring a heart activity-related signal comprising heart activity-related information; from the heart activity-related signal, calculating a frequency of cardiac cycle and a frequency of respiratory cycle; from the heart activity-related signal, determining a cardiac cycle energy at the frequency of cardiac cycle, determining a respiratory cycle energy at the frequency of respiratory cycle, and determining a heart-lung interaction energy at an intermodulation frequency corresponding to the difference between the frequency of respiratory cycle and the frequency of cardiac cycle, or the sum of the frequency of respiratory cycle and the frequency of cardiac cycle; and determining a heart-lung interaction factor from the ratio of the heart-lung interaction energy and one of the cardiac cycle energy and the respiratory cycle energy. The heart-lung interaction factor can be determined non-invasively.
Abstract:
A follower amplifier with power supply biased by a controlled voltage source such that the power supply potentials are, for the frequencies of interest, as close as possible to the potential of the follower output. There is proposed a front-end electronic circuit for biopotential and impedance measurements with outstanding performances (very high input impedance and gain very close to unity). Preferably, the explicit guard electrode and the explicit electronic unit at the belt are no longer necessary; all electronics is embedded in units placed directly at the measurement sites. Moreover, the proposed front-end electronic circuit allows a drastic simplification of the cabling and connectors since all units are connected to only one wire (the theoretical minimum) for potential reference and current return. Preferably, this wire does not even require an electrical isolation and can be easily embedded in the textile of a shirt, in a garment, mesh, belt, etc.
Abstract:
A follower amplifier with power supply biased by a controlled voltage source such that the power supply potentials are, for the frequencies of interest, as close as possible to the potential of the follower output. There is proposed a front-end electronic circuit for biopotential and impedance measurements with outstanding performances (very high input impedance and gain very close to unity). Preferably, the explicit guard electrode and the explicit electronic unit at the belt are no longer necessary; all electronics is embedded in units placed directly at the measurement sites. Moreover, the proposed front-end electronic circuit allows a drastic simplification of the cabling and connectors since all units are connected to only one wire (the theoretical minimum) for potential reference and current return. Preferably, this wire does not even require an electrical isolation and can be easily embedded in the textile of a shirt, in a garment, mesh, belt, etc.
Abstract:
The present disclosure concerns a method for determining a heart-lung interaction factor of a subject, comprising: measuring a heart activity-related signal comprising heart activity-related information; from the heart activity-related signal, calculating a frequency of cardiac cycle and a frequency of respiratory cycle; from the heart activity-related signal, determining a cardiac cycle energy at the frequency of cardiac cycle, determining a respiratory cycle energy at the frequency of respiratory cycle, and determining a heart-lung interaction energy at an intermodulation frequency corresponding to the difference between the frequency of respiratory cycle and the frequency of cardiac cycle, or the sum of the frequency of respiratory cycle and the frequency of cardiac cycle; and determining a heart-lung interaction factor from the ratio of the heart-lung interaction energy and one of the cardiac cycle energy and the respiratory cycle energy. The heart-lung interaction factor can be determined non-invasively.
Abstract:
The invention provides a method and an apparatus for a continuous non-invasive and non-obstrusive monitoring of blood pressure. The method comprises the steps of: a) measuring the value (PW) of a Pulse Wave parameter, equal to or derived from the Pulse Wave Velocity (PWV) parameter of a segment of the arterial tree of a subject, b) measuring the value (CO) of the Cardiac Output parameter, and c) determining the value (BP) of the blood pressure that satisfies B P = arg min BP d ( P W , ( C O , B P ) ) , where PW is the value measured in step a), (CO, BP) corresponds to a predicted value of the Pulse Wave parameter computed according to a model of the segment of the arterial tree, the value (CO) of the Cardiac Output parameter measured in step b) and an hypothesized value of the blood pressure.
Abstract:
The present invention concerns an optical based pulse oximetry device comprising: first, second and third light emitting means, for placement on the skin surface of a body part to inject light in a tissue of said part, the wavelengths of the light emitted by said second and third means being different from each other light detecting means located at a relatively short distance from said first light emitting means and at relatively long distance from said second light emitting means and said third light emitting means, for collecting at the skin surface light of said emitting means having travelled through said tissue, first computing means for denoising the output signals of said long distance light detecting means from the output signals of said short distance light detecting means, and second computing means for deriving oximetry measurements from the denoised output signals of said long distance light detecting means.
Abstract:
The present invention provides a method, a computer-software-product and an apparatus for enabling a determination of speech related audio data within a record of digital audio data. The method comprises steps for extracting audio features from the record of digital audio data, for classifying one or more subsections of the record of digital audio data, and for marking at least a part of the record of digital audio data classified as speech. The classification of the digital audio data record is performed on the basis of the extracted audio features and with respect to at least one predetermined audio class. The extraction of the at least one audio feature as used by a method according to the invention comprises steps for partitioning the record of digital audio data into adjoining frames, defining a window for each frame which is formed by a sequence of adjoining frames containing the frame under consideration, determining for the frame under consideration and at least one further frame of the window a spectral-emphasis-value which is related to the frequency distribution contained in the digital audio data of the respective frame, and assigning a presence-of-speech indicator value to the frame under consideration based on an evaluation of the differences between the spectral-emphasis-values determined for the frame under consideration and at least one further frame of the window.