Abstract:
A method and composition for enhancing corrosion resistance, wear resistance, and contact resistance of a substrate comprising a copper or copper alloy surface. The composition comprises a phosphorus oxide compound selected from the group consisting of a phosphonic acid, a phosphonate salt, a phosphonate ester, a phosphoric acid, a phosphate salt, a phosphate ester, and mixtures thereof; a nitrogen-containing organic compound selected from the group consisting of primary amine, secondary amine, tertiary amine, and aromatic heterocycle comprising nitrogen; and an alcohol.
Abstract:
A method is provided for imparting corrosion resistance onto a surface of a substrate. The method comprises contacting the surface of the substrate with an electrolytic plating solution comprising (a) a source of deposition metal ions of a deposition metal selected from the group consisting of zinc, palladium, silver, nickel, copper, gold, platinum, rhodium, ruthenium, chrome, and alloys thereof, (b) a pre-mixed dispersion of non-metallic nano-particles, wherein the non-metallic particles have a pre-mix coating of surfactant molecules thereon; and applying an external source of electrons to the electrolytic plating solution to thereby electrolytically deposit a metal-based composite coating comprising the deposition metal and non-metallic nano-particles onto the surface.
Abstract:
A process for metalizing a through silicon via feature in a semiconductor integrated circuit device, the process including, during the filling cycle, reversing the polarity of circuit for an interval to generate an anodic potential at said metalizing substrate and desorb leveler from the copper surface within the via, followed by resuming copper deposition by re-establishing the surface of the copper within the via as the cathode in the circuit, thereby yielding a copper filled via feature.
Abstract:
A method for metallizing a through silicon via feature in a semiconductor integrated circuit device substrate. The method comprises immersing the semiconductor integrated circuit device substrate into an electrolytic copper deposition composition, wherein the through silicon via feature has an entry dimension between 1 micrometers and 100 micrometers, a depth dimension between 20 micrometers and 750 micrometers, and an aspect ratio greater than about 2:1; and supplying electrical current to the electrolytic deposition composition to deposit copper metal onto the bottom and sidewall for bottom-up filling to thereby yield a copper filled via feature. The deposition composition comprises (a) a source of copper ions; (b) an acid selected from among an inorganic acid, organic sulfonic acid, and mixtures thereof; (c) an organic disulfide compound; (d) a compound selected from the group consisting of a reaction product of benzyl chloride and hydroxyethyl polyethyleneimine, a quaternized dipyridyl compound, and a combination thereof; and (d) chloride ions.
Abstract:
A composition for enhancing the corrosion resistance of an article comprising a silver coating deposited on a solderable copper substrate. The composition comprises: a) a multi-functional molecule comprising at least one organic functional group that interacts with and protects copper surfaces and at least one organic functional group that interacts with and protects silver surfaces; b) an alcohol; and c) a surfactant.
Abstract:
An adhesion promotion composition and method for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board. The adhesion promotion composition comprises a multi-functional compound comprising a first functional group and a second functional group, wherein the first functional group is an aromatic heterocyclic compound comprising nitrogen and the second functional group is selected from the group consisting of vinyl ether, amide, thiamide, amine, carboxylic acid, ester, alcohol, silane, alkoxy silane, and combinations thereof.
Abstract:
A method is disclosed for enhancing the corrosion resistance of a surface of a copper or copper alloy substrate. The method comprises depositing a metallic surface layer comprising a precious metal on a surface of the copper or copper alloy substrate by immersion displacement plating and exposing the electronic device to an aqueous composition comprising a first organic molecule comprising at least one functional group that interacts with and protects precious metal surfaces and a second organic molecule comprising at least one functional group that interacts with and protects copper surfaces.
Abstract:
There is provided a method and composition for applying a wear resistant composite coating onto a metal surface of an electrical component. The method comprises contacting the metal surface with an electrolytic plating composition comprising (a) a source of tin ions and (b) non-metallic particles, and applying an external source of electrons to the electrolytic plating composition to thereby electrolytically deposit the composite coating onto the metal surface, wherein the composite coating comprises tin metal and the non-metallic particles.
Abstract:
An organic solderability preservative (OSP) composition comprising an alkyl cyclic alcohol and an azole compound having enhanced composition stability against crystallization of the azole compound.
Abstract:
A procedure is described for electroplating platinum and platinum alloys. This procedure permits rapid electroplating of platinum and yields platinum films with excellent properties. The electroplating bath comprises a unique platinum complexing agent, namely an organic polyamine compound. The procedure is also useful for electroplating a variety of platinum alloys. In addition, the bath is highly stable and does not adversely affect the base material being plated.