摘要:
The present invention relates to phase-contrast imaging which visualizes the phase information of coherent radiation passing a scanned object. Focused gratings are used which reduce the creation of trapezoid profile in a projection with a particular angle to the optical axis. A laser supported method is used in combination with a dedicating etching process for creating such focused grating structures.
摘要:
The present invention relates to processing electronics (18) for a detector (12) of an X-ray imaging device (14), the processing electronics (18) with a pulse counter section (22) having at least one count output (30) and with an integrator section (24) having an intensity output (32), wherein the processing electronics (18) is adapted to be connected to a sensor (16) in such a manner that X-ray photons (58) arriving at the sensor (16) can be processed by the pulse counter section (22), by the integrator section (24), or both, and wherein the processing electronics (18) comprises a processor (34) adapted to be connected to the count output (30) and to the intensity output (32) and adapted to output a count result (K) that takes into account both count information (N) obtained at the count output (30) and intensity information (I) obtained at the intensity output (32), so that the count result (K) contains information (N) obtained from the pulse counter section (22) and information (M) obtained from the integrator section (24). The present invention further relates to a corresponding detector element (10) for a detector (12), an X-ray imaging device (14), a method for determining a count result (K) from a detector element (10), a computer program, a data carrier and a detector (12) for an X-ray imaging device (14).
摘要:
The invention relates to a radiation detector (10), comprising an array of pixels (1), wherein each pixel (1) comprises a conversion layer of a semiconductor material (4) for converting incident radiation into electrical signals and wherein each pixel (1) is surrounded by a trench (3) that is at least partly filled with a barrier material that absorbs at least a part of photons generated by the incident radiation. The invention also relates to a method of manufacturing such a radiation detector (10).
摘要:
The invention relates to a radiation detector that comprises a converter element and a plurality of electrode systems arranged on said element, wherein each electrode system comprises a primary electrode and a supplementary electrode, which are connected to a readout circuitry. The primary and the supplementary electrodes may particularly be realized by planar, parallel stripes extending in a common plane, wherein said stripes are electrically connected above said plane.
摘要:
The present invention provides a novel process for producing sterile suspensions of slightly soluble basic peptide complexes. The present invention further provides a novel process for producing sterile lyophilizates of slightly soluble basic peptide complexes. In addition, a novel process for producing sterile suspensions suitable for the parenteral administration of slightly soluble basic peptide complexes is provided. The invention moreover provides sterile suspensions and sterile lyophilizates of slightly soluble basic peptide complexes, and pharmaceutical formulations comprising them. The provided sterile suspensions, sterile lyophilizates and pharmaceutical formulations comprising them are particularly suitable for use in a parenteral dosage form as medicaments for the treatment and prophylaxis of diseases and pathological states in mammals, especially in humans.
摘要:
2,6-diamino-3-halobenzylpyridines of the formula I: ##STR1## wherein R.sub.1 is fluorine and R.sub.2 is hydrogen or chlorine as well as their physiologically acceptable acid addition salts, processes for their manufacture and their use in pharmaceuticals.
摘要:
The present invention relates to processing electronics (18) for a detector (12) of an X-ray imaging device (14), the processing electronics (18) with a pulse counter section (22) having at least one count output (30) and with an integrator section (24) having an intensity output (32), wherein the processing electronics (18) is adapted to be connected to a sensor (16) in such a manner that X-ray photons (58) arriving at the sensor (16) can be processed by the pulse counter section (22), by the integrator section (24), or both, and wherein the processing electronics (18) comprises a processor (34) adapted to be connected to the count output (30) and to the intensity output (32) and adapted to output a count result (K) that takes into account both count information (N) obtained at the count output (30) and intensity information (I) obtained at the intensity output (32), so that the count result (K) contains information (N) obtained from the pulse counter section (22) and information (M) obtained from the integrator section (24). The present invention further relates to a corresponding detector element (10) for a detector (12), an X-ray imaging device (14), a method for determining a count result (K) from a detector element (10), a computer program, a data carrier and a detector (12) for an X-ray imaging device (14).
摘要:
The present invention relates to X-ray image acquisition technology in general. Employing phase-contrast imaging for X-ray image acquisition may significantly enhance the quality and information content of images acquired. However, phase-contrast information may only be obtainable in a small detector region, possibly being too small for a sufficient field of rotation view for specialized X-ray imaging applications. Accordingly, an apparatus for phase-contrast imaging is provided that may allow the acquisition of an enlarged field of view. According to the present invention an apparatus (1) for phase-contrast imaging is provided, comprising an X-ray source (2), an X-ray detector (12) element having a detector size, a beam splitter grating (8) and an analyzer grating (10). An object (6) is arrangeable between the X-ray source (2) and the X-ray detector (12). The beam splitter grating (8) and the analyzer grating (10) are arrangeable between the X-ray source (2) and the X-ray detector (12). X-ray source (2), the beam splitter grating (8), the analyzer grating (10) and the X-ray detector (12) are operatively coupled such that a phase-contrast image of the object (6) is obtainable. The apparatus (1) is adapted for acquiring a phase-contrast image having a field of view larger than the detector size. The X-ray detector element (12) is displaceable and by the displacement of the X-ray detector (12) a phase-contrast image of the field of view is obtainable.
摘要:
The present invention relates to an X-ray imaging system and a method for differential phase—contrast imaging of an object. To improve calibration of differential phase—contrast imaging systems and the alignment of the gratings an X-ray imaging system is provided that comprises an X-ray emitting arrangement providing at least partially coherent X-ray radiation and an X-ray detection arrangement comprising a phase-shift diffraction grating, a phase analyzer grating, and an X-ray image detector, all arranged along an optical axis. For stepping, the gratings and/or the X-ray emitting arrangement are provided with at least two actuators arranged opposite to each other with reference to the optical axis. For calibration, calibration projections are acquired without an object, wherein, the emitted X-ray radiation or one of the gratings is stepwise displaced with a calibration displacement value. For examination, measurement projections are acquired with an object, wherein the emitted X-ray radiation or one of the gratings is stepwise displaced with a measurement, a calibration projection is associated to each of the measurement projections by registering the latter with the calibration projections.
摘要:
The present invention generally refers to a correction method for grating-based X-ray differential phase contrast imaging (DPCI) as well as to an apparatus which can advantageously be applied in X-ray radiography and tomography for hard X-ray DPCI of a sample object or an anatomical region of interest to be scanned. More precisely, the proposed invention provides a suitable approach that helps to enhance the image quality of an acquired X-ray image which is affected by phase wrapping, e.g. in the resulting Moiré interference pattern of an emitted X-ray beam in the detector plane of a Talbot-Lau type interferometer after diffracting said X-ray beam at a phase-shifting beam splitter grating. This problem, which is further aggravated by noise in the obtained DPCI images, occurs if the phase between two adjacent pixels in the detected X-ray image varies by more than π radians and is effected by a line integration over the object's local phase gradient, which induces a phase offset error of π radians that leads to prominent line artifacts parallel to the direction of said line integration.