Abstract:
A system for encrypting and decrypting data being transmitted between a data processing device and a storage device is provided. The system includes a password storing unit, an input unit, an authentication unit, a read unit, a key generator, an encrypting unit, and a decrypting unit. The password storing unit stores an initial password. The input unit is for receiving a current password. The authentication unit is for determining if the current password matches with the initial password. The read unit is for reading the initial password and an identification number of the system. The key generator is for generating an encrypting key and a decrypting key using the initial password and the identification number. If the current password matches with the initial password, the encrypting unit and the decrypting unit are operable to encrypt and decrypt the data using the encrypting key and the decrypting key correspondingly.
Abstract:
An electronic system is provided, including electronic devices, power supplies and a control module. The electronic devices each have male and female connectors, wherein the male connectors are mated with the female connectors, such that the electronic devices are overlapped in a direction and electrically connected to each other. The power supplies each are connected to one of the electronic devices, respectively, for providing power to the electronic devices. The control module has first and second modes to control the male and female connectors, wherein, in the first mode, a first electronic device of the electronic devices, which is not connected to either one of the power supplies, receives power through a first female connector of the first electronic device, and outputs power to another electronic device of the electronic devices through the first male connector.
Abstract:
An electronic device is provided, including an input output expander, at least one electronic device and a control module. The input output expander outputs a power source to a peripheral device by at least one output terminal The electronic device is coupled to the input output expander in a daisy chain configuration. The control module adjusts current powers of the electronic device and the peripheral device according to real time powers of the electronic device and the peripheral device, a maximum output power and parameters, thereby preventing power outputted by the input output expander from being larger than the maximum output power.
Abstract:
A simulated eye is capable of being changeable between an opened state and a closed state. The simulated eye includes an eyeball, an upper eyelid covering the eyeball, a pivot rod, at least one transmission member, and a driving device. The pivot rod is pivotally coupled to the eyeball, the upper eyelid is fixed to the pivot rod, the at least one transmission member connects the pivot rod with the driving device in a manner that the at least one transmission member drives the pivot rod to rotate when the driving device pulls the at least one transmission member.
Abstract:
A proximity network system comprises a plurality of Bluetooth devices disposed respectively in each one of a plurality of electronic apparatuses. The Bluetooth devices are arranged for enabling the electronic apparatuses to receive and transmit Bluetooth wireless signals with each other, wherein each Bluetooth device comprises a community relationship module, an identifying module and a distance detecting module. The community relationship module stores a community relationship data of each Bluetooth device. The identifying module reads the community relationship data of each Bluetooth device to identify whether each Bluetooth device has the same community relationship. The distance detecting module determines whether each Bluetooth device is in a proximity network. When the Bluetooth devices are identified to have the same community relationship with each other and are in the proximity network, each electronic apparatus is allowed to receive and transmit the Bluetooth wireless signals with another electronic apparatus.
Abstract:
An electronic assembly comprises a rotation device comprising a fixed platform defining a through hole. An annular groove is formed in the inside wall of the fixed platform. A first transmission element seats a plurality of teeth. A second transmission element is located in the through hole, and comprises a threaded axis portion and a toothed portion meshing with the plurality of teeth. A third transmission element comprises a rotation portion rotatably mounted in the interior of the annular groove of the fixed platform. A threaded hole is defined in the rotation portion, and is configured for cooperating with the threaded axis portion. A driver source is fixed on the fixed platform and is configured for rotating the first transmission element. An electronic device is mounted on the third transmission element.
Abstract:
A touch sensitive robot includes a body having a control panel, a touch sensor, a driver, and a controller. The touch sensor includes a first conductive belt, a second conductive belt, a power source, and a current sensor. The first conductive belt is wrapped on the body. The second conductive belt is wrapped around but spaced away from the first conductive belt. The power source and the current sensor are connected in series between the first conductive belt and the second conductive belt to form a closed circuit when a point of the second conductive belt is touched to contact the first conductive belt. The current sensor is for measuring the flow of the electrical current of the close loop. The controller is for controlling the driver to turn the body based upon the measurement of the current sensor to orient the control panel to the touch point.
Abstract:
A power supply device includes a power input unit, a voltage converting unit, a communication unit, a control unit. The power input unit is used for receiving an external power source. The voltage converting unit is used for converting the voltage of the external power source to a predetermined voltage. The communication unit is used for obtaining working voltage information of a power receiving device connected to the power supply device. The control unit is used for controlling the voltage converting unit to output a working voltage indicated by the working voltage information to the power receiving device.
Abstract:
An electronic device includes two batteries and a main body. The main body defines a sliding groove passing through two parallel surfaces of the main body. The sliding groove includes an upper surface, a lower surface parallel to the upper surface, a positive contact plate and a negative contact plate. The positive contact plate is positioned on the upper surface. The negative contact plate is positioned on the lower surface. During replacement of the battery, each positive power supply plate of the two batteries remaining in contact with the positive contact plate, and each negative power supply plate of the two batteries remaining in contact with the negative contact plate.