Abstract:
For the purpose of introducing or removing gases into liquids or out of liquids, in particular substrates being subject to a biological conversion, rotating plates (3) are immersed into the liquid phase. The plates (3) are rotatably arranged within a tubular receptacle (1) and arranged in at least one axial section such that they alternately include with the axis (2) of rotation extending in parallel relation to the liquid level an angle of more and less than 90.degree.. Shut-off valves (9) for the gas supply conduit and for the gas discharge conduit are connected to the tubular container (1). The plates (3) are provided with a rough surface and are preferably formed of a porous, in particular foamed, material, wire mesh, wire grating or expanded metal sheet. (FIG. 1)
Abstract:
Apparatus for continously producing ethanol from fermentable sugar solutions comprises horizontal, tubular mixing and separating vessel having internal rotating plates inclined relative to the horizontal axis of rotation. The yeast charged to the vessel is extracted from the vessel and is subjected to a multi-stage fermentation within horizontal fermentation vessels. Within the fermentation vessels there are again arranged inclined rotating plates. The ethanol is separated in a gaseous phase, the pressure being reduced stepwise in succeeding fermentation vessels tubes.
Abstract:
In an enzymatic saccharification process, a sugar solution of constant sugar content is obtained by adding to the starch-containing raw materials, prior to the enzymatic saccharification step, part of the sugar solution obtained after the saccharification step and being separated from solid material and having been brought to a higher concentration, so that a higher sugar content, in particular within the range from 15 to 22% by weight and preferably approximately 20% by weight, can constantly be maintained, independent of the concentration and quality of the raw materials.
Abstract:
The apparatus for continuously separating liquid phases of different density consists of a separating basin (1) within which are arranged partition walls (5) for being lifted and lowered and for being moved one in direction to the other or for being swivelled. Swivelling of the partition walls (5) is effected about an eccentrically arranged axis (7) such that during the swivelling movement the partition walls (5) are simultaneously lifted or lowered. The partition walls (5) can be driven by push rods (8) and thus be swivelled in the contrary sense. When swivelling the partition walls (5) in one direction, the liquid level is lifted in the chamber defined between the partition walls and is lowered in the adjacent chamber, noting that the portion having the lower specific gravity flows over the upper edge, assuming a lower level, of the one partition wall in one direction (11) and that the proportion having the higher specific gravity flows in direction of the arrow (12), i.e. in the opposite direction, below the bottom edge of the outer partition wall (5). The separated phases are collected at the front sides of the separating basin (1). Supply is effected by a supply means (10) approximately centrally of the separating basin (1).
Abstract:
In an apparatus for separating dust from gases, the gases are caused to flow in a rotating stream (3) within a substantially tubular and/or conical housing (1). A guiding body (9) extends in axial direction of the housing (1). Gas supply is effected via a supply slot (2) and the discharge opening (10) for pure gas is formed of a gap surrounding the guiding body (9), in particular by a tube (13) surrounding the guiding body (9) with formation of a gap. The dust discharge openings are designed as annular slots (7) located adjacent the inner wall (6) of the housing (1). A dust collecting bunker (5) is connected to the bottom of the housing.
Abstract:
The solid jacket centrifuge is a plural chamber centrifuge (1). A housing (2) is, together with the centrifuge, stationarily supported, noting that a carrier (6) for cylindrical mantle surfaces (7 and 8) is provided within the housing (2). The cylindrical mantle surfaces (7 and 8) delimit annular chambers (9 and 10) and are shiftable in the direction of the axis of the shaft (3). There is further provided a screw conveyor (12) for introducing the material to be dewatered. The material to be dewatered enters the first annular chamber (9) via radial channels (15). By shifting the cylindrical mantle surface (7) in the axial direction, the material is discharged in a radial direction into the concentric greater annular chamber (10). When subsequently the mantle surface (8) is moved in the axial direction, discharge is again effected in the radial direction.