摘要:
Disclosed are laser glasses composed of a Ga--Na--S glasses doped with one or more kinds of activating ions, laser glass fibers comprising a core and a clad wherein the core is composed of the above-mentioned laser glasses of the present invention and optical fiber amplifiers comprising a pumping source, a laser glass fiber and a means for introducing pumping light and signal light into the laser glass fiber wherein the laser glass fiber is the above-mentioned laser glass fiber of the present invention. The laser glasses of the present invention show high radiative quantum efficiency and host glass stability and can be produced easily.
摘要:
A process and an apparatus for producing a dysprosium-iron alloy or a neodymium-dysprosium-iron alloy by electrolytic reduction of dysprosium fluoride or neodymium fluoride and dysprosium fluoride in a bath of molten electrolyte, consisting essentially of 20-95% by weight of dysprosium fluoride or a mixture of neodymium fluoride and dysprosium fluoride, 5-80% by weight of lithium fluoride, up to 40% by weight or barium fluoride and up to 20% by weight of calcium fluoride, conducted between one or more iron cathode and one or more carbon anode. The apparatus comprises an electrowinning cell of refractory materials coated inside with a lining resistive to the bath, the carbon anode of constant transverse cross-sectional shape over its length, immersed in the electrolyte bath at its free end, the iron cathode of constant transverse cross-sectional shape over its length, immersed in the electrolyte bath at its free end, a receiver placed on the bottom of the cell for collecting the produced dysprosium-iron alloy or neodymium-dysposium-iron alloy in a liquid state on the tip of the iron cathode, siphoning means for withdrawing the molten alloy pooled in the receiver out of the cell, and feeding means for feeding the iron cathode into the electrolyte bath so as to apply the direct current to the iron cathode with a predetermined current density.
摘要:
In a method of manufacturing an optical medium, an extended optical conductor containing active substance is formed to a predetermined shape by the use of resin by repeatedly folding or winding the optical conductor. A laser light beam or an amplified light beam is outputted from an edge portion of the optical conductor by absorbing an excitation light beam incident from the side surface of the optical conductor into the active substance through the resin. Thermoplastic resin is used as the resin. The thermoplastic resin transmits the excitation light beam. The resin is heated up to a glass transition temperature or higher. The optical conductor and the resin are bonded to each other so as to constitute a predetermined shape. The resin is cured.
摘要:
A method for manufacturing a glass fiber includes a process of drawing a starting glass material partially or entirely made of chalcogenide glass or oxychalcogenide glass, such as preform rod, rod-in-tube, or jacketing tube, into a glass fiber in an atmosphere containing sulfur. The concentration of the sulfur in the atmosphere is set at sulfur's vapor pressure or greater around the glass surface at a maximum temperature of the glass fiber while the glass fiber is drawn, thereby fabricating the glass fiber without forming substantially any crystallization on the glass surface.
摘要:
Disclosed are an optical fiber comprising a core and a cladding wherein the core is composed of a In-Ga-Cd-Pb halide glass and the clad composed of a halide glass possesses a refractive index of 1.515 or less, which has a large specific refractive index difference (.DELTA.n) and a large numerical aperture, and such an optical fiber as mentioned above wherein the core contains one or more activating ions as well as an optical fiber amplifier comprising a pumping source, a laser glass fiber and a means for introducing pumping light and signal light into the above laser glass fiber, wherein the laser glass fiber is the optical fiber of the present invention mentioned above.
摘要:
A process and an apparatus for producing an alloy containing terbium (Tb) and/or gadolinium (Gd). The process includes the steps of: (a) preparing a bath of molten electrolyte which consists essentially of 20-95% by weight of TbF.sub.3 and/or GdF.sub.3, 5-80% of LiF, up to 40% of BaF.sub.2 and up to 20% of CaF.sub.2 ; (b) reducing the TbF.sub.3 and/or GdF.sub.3 in the bath, with carbon anode and with cathode made of a metal such as iron or cobalt, so as to electrodeposit Tb and/or Gd on the cathode, and alloying the electrodeposited Tb and/or Gd with metal of the cathode so as to produce the alloy containing Tb and/or Gd in a liquid state on the cathode; (c) adding the TbF.sub.3 and/or GdF.sub.3 to the bath so as to maintain the composition of the bath, for compensating for consumption of the TbF.sub.3 and/or GdF.sub.3 during production of the alloy; (d) dripping the liquid alloy from the cathode into a receiver having a mouth which is open upward in a lower portion of the bath below the cathode, and thereby collecting the liquid alloy in the form of a molten pool in the receiver; and (e) withdrawing the molten pool of the liquid alloy from the receiver.
摘要:
A process and an apparatus for producing a neodymium-iron alloy by electrolysis reduction of neodymium fluoride in a bath of molten electrolyte, consisting essentially of 35-76% by weight of neodymium fluoride, 20-60% by weight of lithium fluoride, up to 40% by weight of barium fluoride and up to 20% by weight of calcium fluoride, conducted between one or more iron cathode and one or more carbon anode. The apparatus comprises an electrowinning cell of refractory materials coated inside with a lining resistive to the bath, the carbon anode of constant transverse cross-sectional shape over its length, immersed into the electrolyte bath at its free and, the iron cathode of constant transverse cross-sectional shape over its length, immersed into the electrolytic bath at its free end, a receiver placed on the bottom of the cell for collecting the produced neodymium-iron alloy in a liquid state on the tip of the iron cathode, siphoning means for withdrawing the molten alloy pooled in the receiver out of the cell, and feeding means for feeding the ever wearing iron cathode into the electrolyte bath so as to apply the direct current to the iron cathode with a predetermined current density.
摘要:
A method for manufacturing a glass preform from a metal sulfide chalcogenide glass to which a large amount of light emitting substances can be added includes steps of etching a surface made of the chalcogenide glass or oxychalcogenide glass of disc shape core and clad forming glass starting materials by an etchant including an acid and a compound reacting with a hydrogen chalcogenide, and forming the core forming glass starting material and the clad forming glass starting material into a united body serving as a glass preform. In a method for manufacturing a single-mode glass fiber using a preform method by drawing the glass preform whose outer round surface is made of a chalcogenide glass or oxychalcogenide glass, the outer round surface of the glass preform is etched using an etchant including an acid and a compound reacting with a hydrogen chalcogenide and then drawn into the glass fiber. In another method for manufacturing a glass fiber by drawing a rod-in-tube in which an outer round surface of the rod and inner and outer round surfaces of the tube are made of a chalcogenide glass or oxychalcogenide glass, the round surfaces made of the chalcogenide glass or oxychalcogenide glass are etched by the etchant including an acid and a compound reacting with a hydrogen chalcogenide and then drawn into the glass fiber.
摘要:
An etchant for chalcogenide glass or oxychalcogenide glass contains an acid and a compound, e.g., an oxidizing agent, which reacts with hydrogen chalcogen to guarantee safe etching of sulfuric glasses in rendering the glass surface smooth and free from surface defects. The etchant is used for an etching method in which a member made of chalcogenide glass or oxychalcogenide glass is dipped in the prepared etchant. The member can make a glass optical member having a surface, substantially free from latent scratch, whose surface roughness difference is one micron meter or less in a length of 0.1 micron meter taken along the surface.
摘要:
A method of producing high purity aluminum-lithium mother alloys essentially free from other alkali metals than lithium, which comprises electrolyzing a mixed molten salts consisting of 34 to 64 wt. % of lithium chloride and 66 to 36 wt. % of potassium chloride, and, optionally, 1 to 20 wt. % of sodium chloride based on a combined weight of the aforesaid two components, using solid aluminum as cathodes, and an .alpha.+.beta. phase aluminum lithium alloy electrode or the alloy coated electrode as a reference electrode, under a current density in the range of 0.005 to 1 A/cm.sup.2, whereby producing aluminum-lithium alloys on the cathode. During electrolyzing, the potential difference between the cathode and the reference electrode is continuously measured and differentiated with respect to time and at the point of a sudden change in the differentiated value, electrolyzing is stopped.