摘要:
A problem of the invention is to prevent a substrate from being damaged with a metal stylus upon mechanical patterning. In the invention, a thin film obtained by accumulating in this order a substrate 2, a back surface electrode layer 3, a multi-element compound semiconductor thin film (light absorbing layer) 5, a transparent buffer layer 6 having a high resistance and a transparent and electroconductive window layer 7 is divided into respective unit cells, which are connected plurally in series to obtain a prescribed voltage, and it contains patterning P1 of dividing the back surface electrode layer 3, patterning P2 of dividing the light absorbing layer 5, or the light absorbing layer and the buffer layer 6, and patterning P3 of dividing from the window layer 7 up to the light absorbing layer 5, in which in P2 and P3, an ultrathin film layer 4 formed secondarily through reaction with a chalcogen element on the surface of the back surface electrode layer 3 in the formation step of the light absorbing layer is used as a solid lubricant upon mechanically removing the constitutional thin film layers with a metal stylus to form grooves.
摘要:
A solar cell with a heightened open-circuit voltage and improved junction quality of the interface between an interfacial layer (or buffer layer) and a thin-film light absorbing layer is disclosed. A thin-film solar cell is fabricated on a glass substrate and includes a metallic back electrode, a light absorbing layer, an interfacial layer, a window layer, and an upper electrode. The solar cell is characterized by the light absorbing layer. The light absorbing layer is a thin film of p-type Cu(InGa)Se.sub.2 (CIGS) of the Cu-III-VI.sub.2 chalcopyrite structure and has such a gallium concentration gradient that the gallium concentration gradually (gradationally) increases from the surface thereof to the inside, thereby attaining a heightened open-circuit voltage. The light absorbing layer has on its surface an ultrathin-film surface layer of Cu(InGa)(SeS).sub.2 (CIGSS), which has such a sulfur concentration gradient that the sulfur concentration abruptly decreases from the surface thereof (i.e., from the interfacial layer side) to the inside, thereby improving interfacial junction characteristics.
摘要:
The property of CIS based thin-film solar cell modules that the modules recover their conversion efficiency, etc. upon irradiation with a weak light is correctly evaluated. A CIS based thin-film solar cell module is subjected to a conventional damp heat test with a constant-light solar simulator (solar simulator) 1D in such a manner that the power of the light source 1E is regulated so that the solar simulator 1D emits a weak light corresponding to the amount of solar radiation in cloudy weather, i.e., resulting in an irradiance of 100-300 W/m2, and the module is continuously irradiated with the weak light throughout the test period under the same temperature, humidity, and storage period conditions as those in the conventional conditions for the test (1,000-hour storage in the dark at a temperature of 85° C. and a relative humidity of 85%). Thus, the property of the module 2′ that the module 2′ does not show considerable deterioration even after storage in an open state for 1,000 hours can be correctly evaluated.
摘要翻译:正确地评估了在用弱光照射时模块恢复其转换效率等的CIS基薄膜太阳能电池模块的性能。 以恒定光太阳能模拟器(太阳模拟器)1D对CIS基薄膜太阳能电池模块进行常规的湿热测试,使得光源1E的功率被调节,使得太阳模拟器1D发射 对应于多云天气中的太阳辐射量的弱光,即导致100-300W / m 2的辐照度,并且在相同温度,湿度和相同温度下在整个测试期间模块连续照射弱光 储存期间与常规的试验条件(在85℃的温度下,黑暗中储存1000小时,相对湿度为85%)相同。 因此,即使在打开状态下存储1000小时后,模块2'的性能也不会显着降低,所以可以正确地评估模块2'的性能。
摘要:
A treatment object containing any one of Cu/Ga, Cu/In and Cu—Ga/In is held in a heated state at a temperature T1 for a time Δt1 in such a state that a selenium source is introduced, thereby forming a selenide. Thereafter, a sulfur source is introduced to replace the atmosphere in the system with a sulfur atmosphere. In this state, the treatment object is held in a heated state at a temperature T2 for a time Δt2. The temperature of the treatment object is then decreased to T3, and, at that temperature, the treatment object is held in a heated state for a time Δt3.
摘要:
A problem of the invention is to prevent a substrate from being damaged with a metal stylus upon mechanical patterning.In the invention, a thin film obtained by accumulating in this order a substrate 2, a back surface electrode layer 3, a multi-element compound semiconductor thin film (light absorbing layer) 5, a transparent buffer layer 6 having a high resistance and a transparent and electroconductive window layer 7 is divided into respective unit cells, which are connected plurally in series to obtain a prescribed voltage, and it contains patterning P1 of dividing the back surface electrode layer 3, patterning P2 of dividing the light absorbing layer 5, or the light absorbing layer and the buffer layer 6, and patterning P3 of dividing from the window layer 7 up to the light absorbing layer 5, in which in P2 and P3, an ultrathin film layer 4 formed secondarily through reaction with a chalcogen element on the surface of the back surface electrode layer 3 in the formation step of the light absorbing layer is used as a solid lubricant upon mechanically removing the constitutional thin film layers with a metal stylus to form grooves.
摘要:
This invention provides a CIS-based thin film solar battery and a process for producing the same in which the formation of an alkali barrier layer and a metal backside electrode layer is carried out at a low cost in a short time to prevent such an unfavorable phenomenon that a light absorbing layer is separated from the interface of the light absorbing layer and the metal backside electrode layer. The CIS-based thin film solar battery (1) comprises a glass substrate (2), an alkali-free layer (7) such as silica, a metal backside electrode layer (3) having a laminate structure, a p-type CIS-based light absorbing layer (4), a high-resistance buffer layer (5), and an n-type window layer (6) stacked in that order. The layer (7), either alone or together with a first layer (3a) in the layer (3), can function as an alkali barrier layer (8) that can prevent and control the thermal diffusion of an alkali component into the light absorbing layer during the formation of the layer (4) from the substrate (2). In the layer (3a), crystal grains are fine and has high density. After the formation of the layer (7) on the substrate by RF or DC sputtering, the layer (3) is continuously formed on the layer (7) by DC sputtering.
摘要:
A high-resistance buffer layer and a window layer (transparent conductive film) are successively formed by the MOCVD method to obtain the same output characteristics as in conventional film deposition by the solution deposition method and to simplify a film deposition method and apparatus. Thus, the cost of raw materials and the cost of waste treatments are reduced to attain a considerable reduction in production cost.After a metallic base electrode layer 1B and a light absorption layer 1C are formed in this order on a glass substrate 1A, a high-resistance buffer layer 1D and a window layer 1E are successively formed in this order in a multi layer arrangement on the light absorption layer 1C of the resultant semifinished solar cell substrate by the MOCVD method. Consequently, a film deposition method and apparatus are simplified and the cost of raw materials and the cost of waste treatments can be reduced.
摘要:
In an integrated structure of a CIS based thin film solar cell obtained by stacking an light absorbing layer, a high-resistance buffer layer, and a window layer in that order, a first buffer layer adjoining the light absorbing layer is made of a compound containing cadmium (Cd), zinc (Zn), or indium (In), a second buffer layer adjoining the first buffer layer is made of a zinc oxide-based thin film, a third buffer layer is formed to cover the end face exposed by forming an interconnect pattern in the light absorbing layer, the first buffer layer, and the second buffer layer and the top end surface of the second buffer layer, and the third buffer layer is made of a zinc oxide-based thin film.
摘要:
A photovoltaic module having long-term durability is obtained at low cost.A CIS based thin-film photovoltaic module 1 is obtained by bonding a cover glass 4 comprising, e.g., a semi-tempered white flat glass, which is inexpensive and durable, to a CIS based thin-film photovoltaic circuit 2 on a glass substrate 2A with a thermally crosslinked ethylene vinyl acetate (hereinafter referred to as EVA) resin film 3 (or sheet) as an adhesive. Use of the EVA resin film 3 reduces the amount of an EVA resin to be used. In the crosslinking, a gas generating from the EVA resin film is removed by vacuum suction to prevent bubble generation or inclusion, etc. A high-capacity storage capacitor 9 is disposed on that side of the glass substrate which is opposite to the circuit side to store the electricity optically generated by the circuit.
摘要:
A thin-film light absorbing layer which is regulated so as to have any desired gallium concentration and which is capable of attaining a high open-circuit voltage is formed by a simple method at a temperature lower than the softening point of the soda-lime float glass. A light absorbing layer is formed by forming a back electrode on a soda-lime float glass substrate, forming on the back electrode layer a stacked precursor film including a copper-gallium alloy layer and an indium layer by sputtering, and then heating the precursor film in an atmosphere of selenium and/or sulfur.