Abstract:
A laser beam is reflected by a light beam scanning device and irradiated onto a hologram recording medium. On the hologram recording medium, an image of a linear scatter body is recorded as a hologram by using reference light that converges on a scanning origin. The light beam scanning device bends the laser beam at the scanning origin and irradiates the laser beam onto the hologram recording medium. At this time, by changing a bending mode of the laser beam with time, an irradiation position of the bent laser beam on the hologram recording medium is changed with time. Diffracted light from the hologram recording medium produces a reproduction image of the linear scatter body on a light receiving surface of the stage. When an object is placed on the light receiving surface, a line pattern is projected by hologram reproduction light, so that the projected image is captured and a three-dimensional shape of the object is measured.
Abstract:
An illumination device has an optical device and an irradiation unit. The irradiation unit has a light source emitting a coherent light beam, and a scanning device capable of adjusting a reflection angle of the coherent light beam emitted from the light source. The light source has light sources emitting a plurality of coherent light beams having an identical wavelength range, the hologram recording medium has a recording area to be scanned with each of a plurality of coherent light beams reflected by the scanning device, and the recording area has an interference fringe that diffracts an incident coherent light beam. The optical device uses the plurality of coherent light beams diffracted by the interference fringe of the recording area so that each of the coherent light beams diffracted by the hologram recording medium is superimposed on at least one portion to reproduce the image of the reference member.
Abstract:
A projection device includes an optical element including a hologram recording medium where information is multiplexedly recorded in each position so as to allow a coherent light beam to be diffused to a plurality of regions, an irradiation device configured to irradiate the optical element with the coherent light beam so as to allow the coherent light beam to scan the hologram recording medium, spatial light modulators configured to be illuminated with the coherent light beam which is incident from the irradiation device to the hologram recording medium to be diffused to the plurality of regions, and projection optical systems, each projection optical system projecting modulation image obtained on each spatial light modulator on corresponding screen. The coherent light beam, which is incident to each position of the hologram recording medium to be diffused, is illuminated on a plurality of the spatial light modulators.
Abstract:
A developing roller is provided having an elastic layer and a surface layer superposed thereon. The surface layer is formed of a resin material containing nitrogen atoms, and contains at least two types of particles, organic-compound particles (M) and organic-compound particles (N). The particles (N) are composed of nitrogen-containing heterocyclic-compound particles. The number-average particle diameter of the particles (N) in the surface layer is smaller than the number-average particle diameter of the particles (M) in the surface layer. Where the universal hardness of the elastic layer is represented by A and the universal hardness of the developing roller is represented by B, they satisfies 0.9≦B/A≦1.8.
Abstract translation:提供了具有弹性层和叠置在其上的表面层的显影辊。 表层由含有氮原子的树脂材料形成,并且含有至少两种颗粒,有机化合物颗粒(M)和有机化合物颗粒(N)。 颗粒(N)由含氮杂环化合物颗粒组成。 表面层中的颗粒(N)的数均粒径小于表面层中的颗粒(M)的数均粒径。 其中弹性层的通用硬度用A表示,显影辊的通用硬度由B表示,满足0.9 <= B / A <= 1.8。
Abstract:
A power transmission belt having a body with a length, an inside, an outside, and laterally spaced sides. The body has a bonding rubber layer in which elongate load carrying cords are embedded to extend lengthwise of the body. The body has a first layer on the inside of the bonding rubber layer in which a plurality of laterally spaced ribs are formed extending lengthwise of the body, and a second layer on the outside of the bonding rubber layer in which a plurality of laterally spaced ribs are formed extending lengthwise of the body. The bonding rubber layer has a sulfur-crosslinked rubber composition including an ethylene-&agr;-olefin elastomer. At least one of the first and second layers has a crosslinking product that is an organic peroxide-crosslinked rubber composition including an ethylene-&agr;-olefin elastomer.
Abstract:
A power transmission belt having a belt body with an inside surface and an outside surface, with the belt body having a compression section and a tension section, spaced outside of the compression section. At least a first part of the tension section is defined by a chlorosulfonated polyethylene rubber composition having a chlorine content of 15 to 30% by weight. At least a second part of the compression section is defined by a rubber composition that is different than the rubber composition of the first part.
Abstract:
An illumination device has an optical device and an irradiation unit. The irradiation unit has a light source emitting a coherent light beam, and a scanning device capable of adjusting a reflection angle of the coherent light beam emitted from the light source. The light source has light sources emitting a plurality of coherent light beams having an identical wavelength range, the hologram recording medium has a recording area to be scanned with each of a plurality of coherent light beams reflected by the scanning device, and the recording area has an interference fringe that diffracts an incident coherent light beam. The optical device uses the plurality of coherent light beams diffracted by the interference fringe of the recording area so that each of the coherent light beams diffracted by the hologram recording medium is superimposed on at least one portion to reproduce the image of the reference member.
Abstract:
An optical device including a hologram recording medium that can reproduce an image of a reference member and an irradiation unit that emits a coherent light beam to the optical device. The irradiation unit includes a light source for emitting a coherent light beam and a scanning device capable of adjusting a reflection angle of the coherent light beam emitted from the light source and that makes a reflected coherent light beam scan the hologram recording medium. The light source has light sources for emitting coherent light beams having different wavelength ranges. The hologram recording medium has a plurality of recording areas to be scanned with a plurality of coherent light beams reflected by the scanning device, respectively. Each of the plurality of recording areas has an interference fringe that diffracts a coherent light beam of the corresponding wavelength range.
Abstract:
Provided are a projection device and a projection-type video display device capable of displaying a plurality of videos, allowing speckles to be inconspicuous, and miniaturizing an optical system. A projection device includes an optical element including light diffusion elements capable of diffusing light, an irradiation device configured to irradiate the optical element with illumination light beams, each illumination light beam scanning the corresponding light diffusion element, spatial light modulators, each spatial light modulator being illuminated with illumination light beam which is incident from the irradiation device to each light diffusion element to be diffused, and projection optical systems, each projection optical system projecting modulation image obtained on each spatial light modulator on corresponding screen. The illumination light beam, which is incident to each position of each light diffusion element to be diffused, overlappedly illuminates on corresponding spatial light modulator.
Abstract:
A laser beam generated by a laser light source is reflected by a light beam scanning device and irradiated onto a hologram recording medium. On the hologram recording medium, an image of a scatter plate is recorded as a hologram by using reference light that converges on a scanning origin. The light beam scanning device bends the laser beam at the scanning origin and irradiates the laser beam onto the hologram recording medium. At this time, scanning is carried out by changing a bending mode of the laser beam with time so that an irradiation position of the bent laser beam on the hologram recording medium changes with time. Regardless of an irradiation position of the beam, diffracted light from the hologram recording medium produces a reproduction image of the scatter plate on the spatial light modulator. The modulated image of the spatial light modulator is projected onto a screen.