Abstract:
A method for throttle progression control to minimize tip-in noise of an internal combustion engine by allowing the engine to receive only the required air for the commanded engine acceleration. The method comprises the steps of a) providing an electronically controlled throttle body and valve, b) providing an electronic control module, c) determining the engine air flow required to satisfy a desired engine acceleration, d) providing an input to the electronic control module corresponding to the engine air flow required, e) programming the electronic control module to limit the inflow of air during engine acceleration to match the engine air flow required for achieving said desired engine acceleration, and f) actuating the throttle body and valve to provide the limited air flow through the throttle body during the desired engine acceleration.
Abstract:
An apparatus and method for controlling a plurality of charge motion control devices in the air intake manifold. In a first aspect of the invention, the valves are controlled through a single common drive shaft. In a second aspect, the runners each include an air flow bypass positioned between the valve and the cylinder head mounting end of the runner such that the valve is positioned further away from the combustion chamber.
Abstract:
A tumble valve for variably impeding air flow in a manifold runner of an internal combustion engine. The valve includes a pivot-shaft located at or in a wall of the runner. The runner is rectanguloid in the region of the pivot-shaft, as is a damper attached along one edge to the pivot-shaft. In closed position, the valve creates a desired degree of tumble in air flowing through the runner, but in open position the shaft and damper lie against the runner wall. The improved valve thus causes no air flow restriction when the valve is open. In any partially-closed position, the lower area of the runner is always blocked because the valve pivots from below, and all air is forced up and over the upper edge of the damper. Fuel efficiency is optimized over an increased range of engine speeds.
Abstract:
A tumble control valve for an intake manifold of an engine which eliminates or substantially reduces air leakage between the bottom and sides of the valve blade through a selected rotational segment of the blade as it moves from the closed position toward the open position. The sealed area is maintained by contouring the inner cavity wall to track the arc defined by the bottom edge of the rotating blade. In other embodiments, a flexible flange or wedge-shaped element is attached to the blade to engage the inner cavity wall through the selected rotational segment. In another aspect of the invention, air flow pressure is maintained and tumble is optimized compared to rotational movement of the blade by contouring the top wall surface to track the arc defined by the rotating upper edge of the blade.