摘要:
Composite fibrous constructs are made of combinations of inorganic-organic hybrid monofilament or multifilament yarns containing at least 6 weight percent of inorganic micro-/nanoparticles and organic monofilament or multifilament yarn with typical examples of the hybrid yarn matrix made of absorbable or non-absorbable thermoplastic polymers and final constructs being in the form of knitted or woven meshes and braided ligatures intended to perform under specific mechanically, biologically, and/or radiologically related functions.
摘要:
Composite fibrous constructs are made of combinations of inorganic-organic hybrid monofilament or multifilament yarns containing at least 6 weight percent of inorganic micro-/nanoparticles and organic monofilament or multifilament yarn with typical examples of the hybrid yarn matrix made of absorbable or non-absorbable thermoplastic polymers and final constructs being in the form of knitted or woven meshes and braided ligatures intended to perform under specific mechanically, biologically, and/or radiologically related functions.
摘要:
Composite fibrous constructs are made of combinations of inorganic-organic hybrid monofilament or multifilament yarns containing at least 6 weight percent of inorganic micro-/nanoparticles and organic monofilament or multifilament yarn with typical examples of the hybrid yarn matrix made of absorbable or non-absorbable thermoplastic polymers and final constructs being in the form of knitted or woven meshes and braided ligatures intended to perform under specific mechanically, biologically, and/or radiologically related functions.
摘要:
Composite fibrous constructs are made of combinations of inorganic-organic hybrid monofilament or multifilament yarns containing at least 6 weight percent of inorganic micro-/nanoparticles and organic monofilament or multifilament yarn with typical examples of the hybrid yarn matrix made of absorbable or non-absorbable thermoplastic polymers and final constructs being in the form of knitted or woven meshes and braided ligatures intended to perform under specific mechanically, biologically, and/or radiologically related functions.
摘要:
A family of selectively absorbable/biodegradable, fibrous composite constructs includes different combinations of biostable and absorbable/biodegradable yarns assembled as initially interdependent, load-bearing components, transitioning to exhibit independent functional properties during in vivo end-use. The family of constructs consists of two groups, one group is made of fiber-reinforced composites of high compliance, absorbable matrices of segmented polyaxial copolyesters reinforced with multifilament yarn constructs, which are combinations of ultrahigh molecular weight polyethylene fibers and at least one absorbable/biodegradable fiber selected from silk fibers and multifilament yarns made from linear segmented, l-lactide copolyesters and poly (3-hydroxyalkanoates, are useful in orthopedic, maxillofacial, urological, vascular, hernial repair and tissue engineering applications. The second group is made of coated and uncoated, warp-knitted mesh constructs for use in hernial, vascular, and urological tissue repair and tissue engineering.
摘要:
A family of selectively absorbable/biodegradable, fibrous composite constructs includes different combinations of biostable and absorbable/biodegradable yarns assembled as initially interdependent, load-bearing components, transitioning to exhibit independent functional properties during in vivo end-use. The family of constructs consists of two groups, one group is made of fiber-reinforced composites of high compliance, absorbable matrices of segmented polyaxial copolyesters reinforced with multifilament yarn constructs, which are combinations of ultrahigh molecular weight polyethylene fibers and at least one absorbable/biodegradable fiber selected from silk fibers and multifilament yarns made from linear segmented, l-lactide copolyesters and poly (3-hydroxyalkanoates, are useful in orthopedic, maxillofacial, urological, vascular, hernial repair and tissue engineering applications. The second group is made of coated and uncoated, warp-knitted mesh constructs for use in hernial, vascular, and urological tissue repair and tissue engineering.
摘要:
This invention deals with a family of inorganic-organic hybrid, melt-extruded filaments having variable cross-sectional geometry with a cross-sectional area ranging between 100 μ2 and 4 mm2, wherein the inorganic component comprises at least 10 weight percent of the total system and is present as dispersed micro-/nanoparticles in an organic absorbable or non-absorbable matrix representing no more than 90 weight percent. Hybrid filaments are particularly useful for the production of absorbable/disintegratable coil components of an absorbable/disintegratable endoureteral stent and radiopaque surgical markers or sutures.