摘要:
A scanning endoscope processor, comprising a photoelectric converter and a controller, is provided. The scanning endoscope processor controls a scanning endoscope having first and second transmitters and an actuator. The photoelectric converter receives light transmitted from the second transmitter and generates a pixel signal according to the amount of light received. The second transmitter transmits reflected light and/or fluorescence from a point within an observation area illuminated by the light emitted from a first emission end. The first transmitter emits the light as a beam from the first emission end. The actuator moves the first emission end along a spiral course. The controller adjusts at least one of a first angular velocity and a generation cycle so that the product of the first angular velocity, the generation cycle, and a first distance is within a predetermined range.
摘要:
An endoscope system comprises a light source, a light sensor, a signal processor, a video-signal generator, and a switcher. The light source emits red light including a first wavelength, green light including a second wavelength, and blue light including a third wavelength. The light sensor receives the light of the light source. The signal processor obtains a red signal based on the red light, a green signal based on the green light, and a blue signal based on the blue light. The video-signal generator generates video signal based on the red, green, and blue signals. The switcher switches between a first switching state and a second switching state. The red, green, and blue signals are output to the video-signal generator in the first switching state. The green and blue signals are output to the video-signal generator in the second switching state.
摘要:
An electronic endoscope has a video-scope with an image sensor, a light source that emits illuminating-light to illuminate an object, an image sensor driver, a luminance detector, one rotary shutter, and a brightness adjuster. The luminance detector detects a luminance of an object image on the basis of image-pixel signals read from the image sensor. The rotary shutter has a light-transmitting portion that transmits the illuminating light, and a shield portion that blocks the illuminating light. The brightness adjuster controls the rotary shutter to adjust an irradiation-interval of the illuminating-light in accordance with a charge accumulation interval. The brightness adjuster shifts a rotation-phase of the rotary shutter by changing a rotation-speed on the basis of the detected luminance, so as to maintain a brightness of the object image at a proper brightness.
摘要:
An autofluorescence endoscope system including first and second exciting light sources, an exciting-light cut-off filter, an imaging device, a light-source controller, and an imaging device driver, is provided. The first and second exciting light sources emit first and second exciting light, respectively. The wavelengths of the first and second exciting lights range in a first and second band, respectively. The first and second exciting lights make an organ autofluoresce. The wavelength in the second band is longer than that of the first band. The exciting-light cut-off filter attenuates a light component at least of the first or second band from an optical image. The imaging device captures an optical image of the subject passing the exciting-light cut-off filter. The light-source controller controls the first and second exciting light sources.
摘要:
An endoscope system comprising an imaging device, an input block, and a signal processing block, is provided. The imaging device has first, second, third, and fourth pixels. The first, second, third, and fourth pixels are covered with first, second, third, and fourth color filters, respectively. The first, second, third, and fourth color filters can be penetrated by first, second, third, and fourth light components, respectively. The first light component reaches a depth, predetermined according to the location of an object, under an organ. The second light component belongs to an identified color of the first light component. Further, a band of the second light component is different from that of the first light component. The input block detects a user's input for selecting one of a number of predetermined display modes. The signal processing block carries out edge enhancement processing for a pixel signal generated by the first pixel. The edge enhancement processing for the pixel signal is carried out when a narrow band image display mode is selected.
摘要:
An electronic endoscope system according to the present invention has a video-scope that has an image sensor, and a light source unit that is capable of selectively emitting normal-light and excitation-light. The electronic endoscope system further has a signal processor and a display processor. The signal processor generates normal color image signals, which corresponds to the normal color image, on the basis of the normal image-pixel signals. Similarly, the signal processor generates auto-fluorescent image signals corresponding to the auto-fluorescent image on the basis of the auto-fluorescent image-pixel signals, and generates diagnosis color image signals corresponding to the diagnosis color image on the basis of the normal color image signals and the auto-fluorescent image signals. The display processor processes the normal color image signals, the auto-fluorescent image signals, and the diagnosis color image signals so as simultaneously to display a normal color movie-image, an auto-fluorescent movie-image, and a diagnosis color movie-image.
摘要:
An image data processor comprising an image signal receiver, a histogram generator, a gain calculator, an amplifier, and a signal feeder, is provided. The image signal receiver receives an autofluorescence image signal. The autofluorescence image signal is generated by an imaging device when the imaging device captures an autofluorescence image. The histogram generator generates a histogram of luminance in the autofluorescence image based on the autofluorescence image signal. The gain calculator calculates a gain based on the histogram and a predetermined luminance value. The amplifier amplifies the autofluorescence image signal by the gain. And then the amplifier generates an amplified autofluorescence image signal. The signal feeder outputs the amplified autofluorescence image signal to a monitor. The monitor displays an amplified autofluorescence image.
摘要:
An electronic endoscope according to the present invention has a video-scope that has a first image sensor and a second image sensor, and a light supplier that selectively irradiates white light and excitation-light on an observed portion. The electronic endoscope further has a first color filter that has spectral transmitting characteristics, such that light having a first wavelength range corresponding to blue color is transmitted, and a second color filter that has spectral transmitting characteristics, such that light having a second wavelength range corresponding to green and red colors is transmitted. The electronic endoscope has a first signal processor, a second signal processor, and a third signal processor. The first signal processor generates normal image video signals. The second signal processor generates narrow-band video signals. The third signal processor generates auto-fluorescent video signals.
摘要:
An electronic endoscope system has a video-scope, an illumination apparatus, an imaging device, and an image synthesizing processor. The illumination apparatus illuminates a normal light and an excitation-light from the video-scope onto an object. The normal light is reflected off the object, and the excitation-light causes the object to emit fluorescence. The imaging device on the video-scope captures a normal image that is formed by the reflected normal light and a fluorescent image that is formed by the fluorescence. The image synthesizing processor synthesizes the normal image and the fluorescent image into a synthesized image. A color signal of the synthesized image is the same as a color signal of the normal image. A luminance signal or the synthesized image is obtained by mixing a luminance signal of the normal image and a luminance signal of the fluorescent image in a predetermined proportion.
摘要:
An electronic endoscope system according to the present invention has a video-scope that has an image sensor, and a light source unit that is capable of selectively emitting normal-light and excitation-light. The electronic endoscope system further has a signal processor and a display processor. The signal processor generates normal color image signals, which corresponds to the normal color image, on the basis of the normal image-pixel signals. Similarly, the signal processor generates auto-fluorescent image signals corresponding to the auto-fluorescent image on the basis of the auto-fluorescent image-pixel signals, and generates diagnosis color image signals corresponding to the diagnosis color image on the basis of the normal color image signals and the auto-fluorescent image signals. The display processor processes the normal color image signals, the auto-fluorescent image signals, and the diagnosis color image signals so as simultaneously to display a normal color movie-image, an auto-fluorescent movie-image, and a diagnosis color movie-image.