摘要:
A trench semiconductor power device and a fabrication method. The fabrication method includes: eroding an n epitaxial layer on an n+ substrate to form multiple gate trenches, and implanting with dopants to form source regions and P type base regions, respectively; eroding an interlayer dielectric to form a trench plug; and eroding an aluminum copper alloy to form a metal pad layer and wires. The method forms the source regions and the base regions by directly implanting, does not need source region masks and base region masks, has a simple fabrication process, and improves the quality and reliability of the device.
摘要:
A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
摘要:
A trench DMOS transistor device that comprises: (a) a substrate of a first conductivity type; (b) an epitaxial layer of first conductivity type over the substrate, wherein the epitaxial layer has a lower majority carrier concentration than the substrate; (c) a trench extending into the epitaxial layer from an upper surface of the epitaxial layer; (d) an insulating layer lining at least a portion of the trench; (e) a conductive region within the trench adjacent the insulating layer; (f) a body region of a second conductivity type provided within an upper portion of the epitaxial layer and adjacent the trench; (g) a source region of first conductivity type within an upper portion of the body region and adjacent the trench; and (h) one or more low resistivity deep regions extending into the device from an upper surface of the epitaxial layer. The low resistivity deep region acts to provide electrical contact with the substrate, which is a common drain region for the device. By constructing a trench DMOS transistor device in this fashion, source, drain and gate contacts can all be provided on a single surface of the device.
摘要:
A method for making trench DMOS is provided that utilizes polycide and refractory techniques to make trench DMOS which exhibit low gate resistance, low gate capacitance, reduced distributed RC gate propagation delay, and improved switching speeds for high frequency applications.
摘要:
A merged device is that comprises a plurality of MOSFET cells and a plurality of Schottky rectifier cells, as well as a method of designing and making the same. According to an embodiment of the invention, the MOSFET cells comprise: (a) a source region of first conductivity type formed within an upper portion of a semiconductor region, (b) a body region of second conductivity type formed within a middle portion of the semiconductor region, (c) a drain region of first conductivity type formed within a lower portion of the semiconductor region, and (d) a gate region provided adjacent the source region, the body region, and the drain region. The Schottky diode cells in this embodiment are disposed within a trench network and comprise a conductor portion in Schottky rectifying contact with the lower portion of the semiconductor region. At least one MOSFET cell gate region is positioned along a sidewall of the trench network and adjacent at least one Schottky diode cell in this embodiment.
摘要:
A trench Schottky barrier and a method of making the same in which the rectifier has a semiconductor region having first and second opposing faces; the semiconductor region having a drift region of a first conductivity type adjacent the first face and a cathode region of the first conductivity type adjacent the second face; the drift region having a lower net doping concentration than that of the cathode region. The rectifier also has a plurality of trenches extending into the semiconductor region from the first face; the trenches defining a plurality of mesas within the semiconductor region, and the trenches forming a plurality of trench intersections. The rectifier further includes an oxide layer covering the semiconductor region on the bottoms of the trenches and on lower portions of sidewalls of the trenches, a polysilicon region disposed over the oxide layer within the trenches, and insulating regions at the trench intersections that cover a portion of the polysilicon region and a portion of the oxide layer.
摘要:
In a first aspect of the invention, a modified semiconductor substrate is provided. The modified substrate comprises: (1) a semiconductor substrate; (2) at least one buffer layer provided over at least a portion of the substrate; and (3) a plurality of trenches comprising (a) a plurality of internal trenches that extend into the semiconductor substrate and (b) at least one shallow peripheral trench that extends into the at least one buffer layer but does not extend into the semiconductor substrate. In another aspect, a method of selectively providing trenches in a semiconductor substrate is provided. According to a further aspect of the invention, a trench DMOS transistor structure that includes at least one peripheral trench and a plurality of internal trenches is provided. The structure comprises: (1) a substrate of a first conductivity type; (2) a body region on the substrate having a second conductivity type, wherein the peripheral and internal trenches extend through the body region; (3) an insulating layer that lines each of the peripheral and internal trenches; (4) a first conductive electrode overlying each insulating layer; and (5) source regions of the first conductivity type in the body region adjacent to the each internal trench, but not adjacent to the at least one peripheral trench.
摘要:
A trench Schottky barrier rectifier and a method of making the same in which the rectifier has a semiconductor region having first and second opposing faces; the semiconductor region having a drift region of first conductivity type adjacent the first face and a cathode region of the first conductivity type adjacent the second face; the drift region having a lower net doping concentration than that of the cathode region. The rectifier also has a plurality of trenches extending into the semiconductor region from the first face; the trenches defining a plurality of mesas within the semiconductor region, and the trenches forming a plurality of trench intersections. The rectifier further includes an oxide layer covering the semiconductor region on bottoms of the trenches and on lower portions of sidewalls of the trenches, a polysilicon region disposed over the oxide layer within the trenches, and insulating regions at the trench intersections that cover a portion of the polysilicon region and a portion of the oxide layer.
摘要:
A method of manufacturing one or more trench DMOS transistors is provided. In this method, one or more or more body regions adjacent one or more trenches are provided. The one or more trenches are lined with a first insulating layer. A portion of the first insulating layer is removed along at least the upper sidewalls of the trenches, exposing portions of the body regions. An oxide layer is then formed over at least the exposed portions of the body regions, resulting in regions of reduced majority carrier concentration within the body regions adjacent the oxide layer. This modification of the majority carrier concentration in the body regions is advantageous in that a low threshold voltage can be established within the DMOS transistor without resorting to a thinner gate oxide (which would reduce yield and switching speed) and without substantially increasing the likelihood of punch-through.
摘要:
This invention discloses a DMOS power device supported on a substrate of a first conductivity type functioning as a drain. The DMOS power device includes a polysilicon-over-double-gate-oxide gate disposed on the substrate includes a polysilicon layer disposed over a double-gate-oxide structure having a central thick-gate-oxide segment surrounded by a thin-gate-oxide layer with a thickness of about one-fourth to one-half of a thickness of the thick-gate-oxide segment. The DMOS power device further includes a body region of a second conductivity type disposed in the substrate underneath the thin-gate-oxide layer around edges of the central thick-gate-oxide segment the body region extending out laterally to a neighboring device circuit element. The DMOS power device further includes a source region of the first conductivity type disposed in the substrate encompassed in the body region having a portion extending laterally underneath the thin-gate-oxide layer. The DMOS power device further includes an insulation layer covering the polysilicon-over-double-gate-oxide gate with contact openings above the substrate exposing the source region and the body region.