Abstract:
In a current detection device for detecting current in a busbar, a reduction in device size may be realized by employing a small magnetic core. The prevention or reduction of excessive heat generation by the busbar, the facilitation of the attachment task, and a reduction in the amount of space required for the attachment task may also be realized. The folded-back busbar is U-shaped with a bar-shaped penetration portion that passes through a hole portion of a magnetic core, two bar-shaped extension portions, and two flat plate-shaped penetration portions. The width of each terminal portion is larger than the widths of the penetration portion and the extension portions. An insulating casing supports the magnetic core, a Hall element, and the folded-back busbar in a fixed positional relationship, with the two terminal portions being exposed to the outside.
Abstract:
In a current detection device for detecting current in a busbar, a reduction in device size may be realized by employing a small magnetic core. The prevention or reduction of excessive heat generation by the busbar, the facilitation of the attachment task, and a reduction in the amount of space required for the attachment task may also be realized. The folded-back busbar is U-shaped with a bar-shaped penetration portion that passes through a hole portion of a magnetic core, two bar-shaped extension portions, and two flat plate-shaped penetration portions. The width of each terminal portion is larger than the widths of the penetration portion and the extension portions. An insulating casing supports the magnetic core, a Hall element, and the folded-back busbar in a fixed positional relationship, with the two terminal portions being exposed to the outside.
Abstract:
A reliable solar cell module is provided whereby the liquid is less likely to stay thereon, thus dirt is less likely to occur on the light receiving surface of the solar cell module even in a prolonged use. A solar cell module comprising a solar cell panel P configured by arranging a solar cell element between a light receiving surface side member and a rear surface side member, and a module frame W1 fixed to the solar cell panel P surrounds the solar cell panel P with its interior surface being abutted with an external peripheral part of the light receiving surface side member is provided. In this solar cell module, the module frame W1 has a notch 27 that extends from its inner part towards its external part in plan view from a side of the light receiving surface side member and is provided with an end portion 5 on an exterior side surface of the frame member, and this notch 27 has a draw part 4 with smallest width at an inner part rather than at the end portion 5.
Abstract:
A reliable solar cell module is provided whereby the liquid is less likely to stay thereon, thus dirt is less likely to occur on the light receiving surface of the solar cell module even in a prolonged use. A solar cell module comprising a solar cell panel, and a module frame. The solar cell module comprising a light receiving surface side member with a light receiving surface: a rear surface side member; and a solar cell element between the light receiving surface side member an the rear surface side member. The module frame fixed to the solar cell panel and surrounding the solar cell panel with its interior surface being abutted with an external peripheral part of the solar cell panel. The module frame comprises a notch extending from its inner part towards its external part in plan view from a side of the light receiving surface side member. The notch member comprises: a first portion on an upper surface of the module frame extending so as to reach an exterior side surface of the module frame, a second portion on the exterior side surface of the module frame connected to the first portion and extending from the upper surface of the module frame so that a lower end of an exterior side surface of the light receiving surface side member is exposed, and a draw part with smallest width.
Abstract:
A reliable solar cell module is provided whereby the liquid is less likely to stay thereon, thus dirt is less likely to occur on the light receiving surface of the solar cell module even in a prolonged use. A solar cell module comprising a solar cell panel P configured by arranging a solar cell element between a light receiving surface side member and a rear surface side member, and a module frame W1 fixed to the solar cell panel P surrounds the solar cell panel P with its interior surface being abutted with an external peripheral part of the light receiving surface side member is provided. In this solar cell module, the module frame W1 has a notch 27 that extends from its inner part towards its external part in plan view from a side of the light receiving surface side member and is provided with an end portion 5 on an exterior side surface of the frame member, and this notch 27 has a draw part 4 with smallest width at an inner part rather than at the end portion 5.
Abstract:
In a solar cell module, a solder fillet 19 is formed on an end surface on the shorter length side of a connection tab to be connected to a bus bar electrode 2a, 3a up to the height of the connection tab. The geometry of the solder fillet 19 is adjusted so that an indentation amount is 0-54% of the height or a bulge amount is 0-10% of the height, by which the maximum principal stress generated during the manufacturing process of a solar cell element 4 can be reduced, and therefore occurrences of cracks can be reduced. Also during a laminating process, breaking of the solar cell element or crack generation can be eliminated.
Abstract:
A magnet is provided on either a negative film mask or a negative film mask table of a negative film mask apparatus, and a magnetic material is provided on the other of these. When the negative film mask in which a negative film has been loaded is placed on the negative film mask table, the negative film mask is held in place by a magnetic force. The negative film mask apparatus is provided with a stopper. The stopper is adapted to press a closely-contacting member against a sliding surface of the negative film mask table when necessary, thereby preventing the negative film mask from sliding. The closely-contacting member is made of a material such as rubber so that it can closely contact a sliding surface of the negative film mask table. Further, a magnetic member is included in the stopper. The stopper generates a large frictional force utilizing pressing force and magnetic force. Therefore, the negative film mask can be stably held in place in a state in which the negative film mask and the negative film mask table are inclined. Also, the large frictional force makes it possible to stably hold the negative film mask in place against a magnetic force which acts on the negative film mask in a horizontal direction.
Abstract:
A current detector includes a magnetic core that is molded by sintering powder made from a magnetic material, and a current detection busbar. The current detection busbar is a conductor including a penetrating portion that penetrates a hole portion of the magnetic core in a first direction in which a current flows, and terminal portions that are in connection with the penetrating portion on both sides in the first direction. The width of the terminal portions is larger than the maximum width of the hole portion, and the minimum width of the cross-sectional contour of the penetrating portion is larger than the thickness of the terminal portions. An insulating casing holds the magnetic core, the current detection busbar, and the Hall element, while keeping them from coming into contact with each other.
Abstract:
An overcurrent cutoff device includes a heat generating unit located in series with a path leading from a battery B for a vehicle to a motor via a wire, and a heat sensing unit with characteristics varying with the temperature supplied from the heat generating unit. The overcurrent cutoff device cuts off overcurrent by activating a switching element, based on a signal in accordance with the temperature obtained from the heat sensing unit. The overcurrent cutoff device includes an overcurrent detecting element in which the heat generating unit and the heat sensing unit are integrally covered with a molded resin section.
Abstract:
An overcurrent cutoff device includes a heat generating unit located in series with a path leading from a battery B for a vehicle to a motor via a wire, and a heat sensing unit with characteristics varying with the temperature supplied from the heat generating unit. The overcurrent cutoff device cuts off overcurrent by activating a switching element, based on a signal in accordance with the temperature obtained from the heat sensing unit. The overcurrent cutoff device includes an overcurrent detecting element in which the heat generating unit and the heat sensing unit are integrally covered with a molded resin section.