摘要:
The present invention is a semiconductor contact formation system and method. Contact insulation regions are formed with multiple etch stop sublayers that facilitate formation of contacts. This contact formation process provides relatively small substrate connections while addressing critical lithographic printing limitation concerns in forming contact holes with small dimensions. In one embodiment, a multiple etch stop insulation layer comprising multiple etch stop layers is deposited. A contact region is formed in the multiple etch stop insulation layer by selectively removing (e.g., etching) some of the multiple etch stop insulation layer. In one embodiment, a larger portion of the multiple etch stop insulation layer is removed close to the metal layer and a smaller portion is removed closer to the substrate. The different contact region widths are achieved by performing multiple etching processes controlled by the multiple etch stop layers in the multiple etch stop insulation layer and spacer formation to shrink contact size at a bottom portion. Electrical conducting material (e.g., tungsten) is deposited in the contact region.
摘要:
A method utilizing a multilayer anti-reflective coating layer structure can achieve low reflectivity at high numerical apertures. The multilayer anti-reflective coating structure can be utilized as a hard mask forming various integrated circuit structures. A multilayer anti-reflective coating structure can be utilized to form gate stacks comprised of polysilicon and a dielectric layer. A photoresist is applied above the multilayer anti-reflective coating which can include silicon oxynitride (SiON) and silicon rich nitride (SiRN).
摘要:
A structure and method for reducing standing waves in a photoresist during manufacturing of a semiconductor is presented. Embodiments of the present invention include a method for reducing standing wave formation in a photoresist during manufacturing a semiconductor device comprising depositing a first anti-reflective coating having an extinction coefficient above a material, and depositing a second anti-reflective coating having an extinction coefficient above the first anti-reflective coating, such that the first anti-reflective coating and the second anti-reflective coating reduce the formation of standing waves in a photoresist during a lithography process.
摘要:
A technique for forming at least part of an array of a dual bit memory core is disclosed. A Safier material is utilized in the formation process to reduce the size of buried bitlines in the memory, which is suitable for use in storing data for computers and the like. The smaller (e.g., narrower) bitlines facilitate increased packing densities while maintaining an effective channel length between the bitlines. The separation between the bitlines allows dual bits that are stored above the channel within a charge trapping layer to remain sufficiently separated so as to not interfere with one another. In this manner, one bit can be operated on (e.g., for read, write or erase operations) without substantially or adversely affecting the other bit. Additionally, bit separation is preserved and leakage currents, cross talk, as well as other adverse effects that can result from narrow channels are mitigated, and the memory device is allowed to operate as desired.
摘要:
The present invention generally relates to a method of forming a graded junction within a semiconductor substrate. A first masking pattern having a first opening characterized by a first lateral dimension is formed over the semiconductor substrate. The semiconductor substrate is doped with a first dopant, using the first masking pattern as a doping mask, thereby forming a first dopant region in the semiconductor substrate underlying the first opening. The first masking pattern is swelled to decrease the first lateral dimension of the first opening to a second lateral dimension. The semiconductor substrate is then doped with a second dopant, using the swelled first masking pattern as a doping mask, thereby forming a second dopant region in the semiconductor substrate, and furthermore defining a graded junction within the semiconductor substrate.
摘要:
An exemplary method of depositing photoresist material on an integrated circuit wafer is described. This method can include providing a cross-shaped resist dispenser including a plurality of resist dispense nozzles; dispensing photoresist material through the plurality of resist dispense nozzles to an integrated circuit wafer; and rotating at least one of the cross-shaped resist dispenser and the integrated circuit wafer.
摘要:
A method utilizing a multilayer anti-reflective coating layer structure can achieve low reflectivity at high numerical apertures. The multilayer anti-reflective coating structure can be utilized as a hard mask forming various integrated circuit structures. A multilayer anti-reflective coating structure can be utilized to form gate stacks comprised of polysilicon and a dielectric layer. A photoresist is applied above the multilayer anti-reflective coating which can include silicon oxynitride (SiON) and silicon rich nitride (SiRN).
摘要:
The present invention is a semiconductor contact formation system and method. Contact insulation regions are formed with multiple etch stop sublayers that facilitate formation of contacts. This contact formation process provides relatively small substrate connections while addressing critical lithographic printing limitation concerns in forming contact holes with small dimensions. In one embodiment, a multiple etch stop insulation layer comprising multiple etch stop layers is deposited. A contact region is formed in the multiple etch stop insulation layer by selectively removing (e.g., etching) some of the multiple etch stop insulation layer. In one embodiment, a larger portion of the multiple etch stop insulation layer is removed close to the metal layer and a smaller portion is removed closer to the substrate. The different contact region widths are achieved by performing multiple etching processes controlled by the multiple etch stop layers in the multiple etch stop insulation layer and spacer formation to shrink contact size at a bottom portion. Electrical conducting material (e.g., tungsten) is deposited in the contact region.
摘要:
A method is provided for creating optical features on a lithography mask for use in patterning a series of openings of an etch mask on a semiconductor device wafer, comprising creating a series of optical features spaced on the lithography mask from one another along a first direction, where the individual optical features have first mask feature dimensions along the first direction that are smaller than a desired first dimension for the openings to be patterned in the etch mask.
摘要:
According to one exemplary embodiment, a structure comprises a substrate. The structure further comprises at least one memory cell situated on the substrate. The at least one memory cell may be, for example, a SONOS flash memory cell. The structure further comprises an interlayer dielectric layer situated over at least one memory cell and over the substrate. The structure further comprises a first antireflective coating layer situated over the interlayer dielectric layer. According to this exemplary embodiment, the structure further comprises a second antireflective coating layer situated directly over the first anti reflective coating layer. Either the first antireflective coating layer or second antireflective coating layer must be a silicon-rich layer. The first antireflective coating layer and the second antireflective coating may form a UV radiation blocking layer having a UV transparency less than approximately 1.0 percent, for example.