摘要:
The present invention generally relates to a method of forming a graded junction within a semiconductor substrate. A first masking pattern having a first opening characterized by a first lateral dimension is formed over the semiconductor substrate. The semiconductor substrate is doped with a first dopant, using the first masking pattern as a doping mask, thereby forming a first dopant region in the semiconductor substrate underlying the first opening. The first masking pattern is swelled to decrease the first lateral dimension of the first opening to a second lateral dimension. The semiconductor substrate is then doped with a second dopant, using the swelled first masking pattern as a doping mask, thereby forming a second dopant region in the semiconductor substrate, and furthermore defining a graded junction within the semiconductor substrate.
摘要:
One aspect of the invention relates to a method of removing a hard mask from a surface, especially a silicon surface. The hard mask is removed by first applying a sacrificial coating and then plasma etching. The sacrificial material fills pattern gaps formed using the hard mask and protects insulators, such as oxides, within those pattern gaps. The sacrificial material is removed together with the hard mask by the plasma etching. The invention provides a process for removing hard masks from silicon layers without significantly damaging either the silicon layer or any exposed oxides and can be applied in a variety of integrated circuit device manufacturing processes, such as patterning the floating gate layer of a flash memory device.
摘要:
A method and device for avoiding oxide gouging in shallow trench isolation (STI) regions of a semiconductor device. A trench may be etched in an STI region and filled with insulating material. An anti-reflective coating (ARC) layer may be deposited over the STI region and extend beyond the boundaries of the STI region. A portion of the ARC layer may be etched leaving a remaining portion of the ARC layer over the STI region and extending beyond the boundaries of the STI region. A protective cap may be deposited to cover the remaining portion of the ARC layer as well as the insulating material. The protective cap may be etched back to expose the ARC layer. However, the protective cap still covers and protects the insulating material. By providing a protective cap that covers the insulating material, gouging of the insulating material in STI regions may be avoided.
摘要:
The present invention relates generally to semiconductor memory devices and more particularly to multi-bit flash electrically erasable programmable read only memory (EEPROM) devices that employ charge trapping within a floating gate to indicate a 0 or 1 bit state. A memory device is provided, according to an aspect of the invention, comprising a floating gate transistor having dual polysilicon floating gates with an isolation opening between floating gates.
摘要:
The present invention relates generally to semiconductor memory devices and more particularly to multi-bit flash electrically erasable programmable read only memory (EEPROM) devices that employ charge trapping within a floating gate to indicate a 0 or 1 bit state. A memory device is provided, according to an aspect of the invention, comprising a floating gate transistor having dual polysilicon floating gates with an isolation opening between floating gates. Processes for making the memory device according to the invention are also disclosed.
摘要:
A method of manufacturing a semiconductor device includes forming an isolation region defining an active region in a semiconductor substrate, forming a first insulating film over the semiconductor substrate, forming a second insulating film having etching properties different from those of the first insulating film over the first insulating film, selectively removing the second insulating film from a first region over the active region and the isolation region by dry etching using a fluorocarbon-based etching gas, removing a residual film formed by the dry etching over the first insulating film by exposure in an atmosphere containing oxygen, and selectively removing the first insulating film from the first region by wet etching.
摘要:
A method for forming high quality multiple thickness oxide layers having different thicknesses by eliminating descum induced defects. The method includes forming an oxide layer, masking the oxide layer with a photoresist layer, and developing the photoresist layer to expose at least one region of the oxide layer. The substrate is then heated and descummed to remove any residue resulting from developing the photoresist. Alternatively, the photoresist layer may be cured prior to heating and descumming the substrate. The oxide layer is then etched, and the remaining photoresist is stripped before another layer of oxide is grown on the substrate.
摘要:
A method for forming high quality oxide layers having different thicknesses by eliminating descum induced defects is disclosed. A semiconductor substrate is subjected to reactive ion etching. The semiconductor substrate includes a wafer, an oxide layer on the wafer, a developed photoresist mask on the oxide layer. The oxide layer is then etched, and the remaining photoresist is stripped before another layer of oxide is grown on the substrate.
摘要:
A semiconductor device fabrication method including: forming a gate conductor including a gate for a transistor in the first region, and a gate for a transistor in the second region, and a first film over a first stress film for covering the transistors; etching the first film from the second region by using a mask layer and etching the first film under the mask layer in the direction parallel to the surface of the semiconductor substrate by a first width from an edge of the first mask layer, and the first stress film from the second region; forming a second stress film covering the first stress film and the first film; etching the second stress film so that a portion of the second stress film overlaps a portion of the first stress film and a portion of the first film; and forming a contact hole connected with the gate conductor.
摘要:
A method and device for avoiding oxide gouging in shallow trench isolation (STI) regions of a semiconductor device. A trench may be etched in an STI region and filled with insulating material. An anti-reflective coating (ARC) layer may be deposited over the STI region and extend beyond the boundaries of the STI region. A portion of the ARC layer may be etched leaving a remaining portion of the ARC layer over the STI region and extending beyond the boundaries of the STI region. A protective cap may be deposited to cover the remaining portion of the ARC layer as well as the insulating material. The protective cap may be etched back to expose the ARC layer. However, the protective cap still covers and protects the insulating material. By providing a protective cap that covers the insulating material, gouging of the insulating material in STI regions may be avoided.