Abstract:
Disclosed is a mobile communication network employing a plurality of digital optical links for providing high speed, more capacity and multimedia services which includes a base station (BS) controller for managing the overall control of the mobile network and coupled to a base transceiver system (BTS) via a first E1/T1 link; a BTS controller coupled to the BS controller via a second E1/T1 link for managing the channel capacity of multiple base transceiver system operable by the base station controller; a plurality of optical fiber links coupled to said BTS controller through optical coupling; a plurality of compact base transceiver systems (BTSs) having a plurality of optical transponders arranged in space relation with each other along each of said optical fiber links; said optical transponders for receiving an up-link signal at one frequency to be retransmitted as a down-link signal and for amplifying said up-link signal at another frequency to other compact BTS along said optical fiber link.
Abstract:
A signal received in a wavelength division multiplexing system is delayed and an exclusive OR logical operation is performed on the received signal and the delayed received signal. Then, the direct current voltage of a selection signal which is a result of the operation is measured to identify the bit-rate of the received signal. When a mixture of various signals having different bit-rates are used over a network in the wavelength division multiplexing system, a receiving terminal can automatically recognize information on the bit-rate of a received optical signal and extract a reference clock signal from the received signal, thereby reproducing the received optical signal without distortion, using the clock signal.
Abstract:
A latch type optical communication module is easily mounted to and detached from a system port having a cage by means of a latch. The optical communication module is provided with a latch. The latch is rotated around a hinge shaft fixed to both sides of a receptacle and engaging latch holes of ends of the latch. When rotated the latch moves latch drivers to force a slider upward, the slider raises a groove engaging a fixing tap of the optical communication module thereby allowing the optical communication module to be detached from the system port. The optical communication module can be detached from the system port without a tool or influence or adjacent an optical communication module.
Abstract:
A bit-rate independent optical receiver and a method thereof. In the bit-rate independent optical receiver, an optoelectric converter converts an input optical signal to an original electrical signal, a bit rate identifying unit forms a resultant signal by performing an exclusive-OR (XOR) logic operation on the original electrical signal received from the optoelectric converter and a second signal corresponding to the original electrical signal delayed by a predetermined quantity of time, and detects a bit rate from the resultant signal, a reference clock generator generates a reference clock signal according to the detected bit rate, and a clock and data recovery circuit recovers a clock signal and data from the input signal according to the reference clock signal.
Abstract:
An optical communication module is provided with a platform to provide an accurate axial alignment with optical transceiving subassemblies. In the optical communication module, axes of the optical transceiving sub-assemblies are aligned by virtue of previously established axial alignment of the platform, and the platform is fixed to a main body by inserting an insertion jaw of a cover into an insertion groove formed on an upper surface of the platform. After the optical transceiving subassemblies are inserted into the platform having the axial alignment required for a system, a bonding agent is filled into spaces defined in the platform, thereby preventing the axes from deviated by an external force. The optical communication module allows for easier and more accurate guidance of a connection between the optical transceiving sub-assemblies and the optical connector, thereby minimizing the optical loss, and preventing the patterns on the printed circuit board from being damaged due to the insertion and disconnection of the optical connector.
Abstract:
A self-healing bit rate transducer in an optical transmission system includes a demultiplexer for demultiplexing optical signals into different wavelength channels; bit rate receivers for converting the demultiplexed optical signals into the corresponding electrical signals, for generating a bit-rate error signal, and for generating a temperature reference signal; a detecting section for generating a signal indicative of the bit rate of the optical signals outputted from the demultiplexer; and a controller for comparing the detected bit rate with a predetermined data to generate a control signal that is used to adjust the bit rate of the respective bit rate receiver.
Abstract:
A cross-connect device in an optical network which includes a demultiplexer for demultiplexing an input optical signal by channels; a plurality of arbitrary transmission optical receivers for converting the optical channel signals received from the demultiplexer to electrical signals and for recovering a clock signal and data according to a reference clock signal generated at the transmission rate of the electrical signals; a cross-connect switch for path-routing the electrical signals received from the arbitrary transmission optical receivers; a controller for controlling the path-routing of the cross-connect switch; a plurality of arbitrary transmission optical transmitters for converting the electrical signal received from each output port of the cross-connect switch to an optical signal; and, a multiplexer for multiplexing the optical signals received from the arbitrary transmission optical transmitters onto one stand of optical fiber.