Abstract:
The present invention provides crystalline molecules or molecular complexes which comprise binding pockets of Aurora-2 or its homologues. The invention also provides crystals comprising Aurora-2. The present invention also relates to a computer comprising a data storage medium encoded with the structural coordinates of Aurora-2 binding pockets and methods of using a computer to evaluate the ability of a compound to bind to the molecule or molecular complex. This invention also provides methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention provides methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to Aurora-2 or homologues thereof.
Abstract:
The present invention relates to inhibitors of GSK-3 and methods for producing these inhibitors. The invention also provides pharmaceutical compositions comprising the inhibitors and methods of utilizing those compositions in the treatment and prevention of various disorders, such as diabetes and Alzheimer's disease. In addition, the invention relates to molecules or molecular complexes which comprise binding pockets of GSK-3β or its homologues. The invention relates to a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. The invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. The invention relates to methods of using the structure coordinates to screen for and design compounds that bind to GSK-3β protein or homologues thereof. The invention also relates to crystallizable compositions and crystals comprising GSK-3β protein or GSK-3β protein complexes.
Abstract:
The present invention provides crystalline molecules or molecular complexes which comprise binding pockets of Aurora-2 or its homologues. The invention also provides crystals comprising Aurora-2. The present invention also relates to a computer comprising a data storage medium encoded with the structural coordinates of Aurora-2 binding pockets and methods of using a computer to evaluate the ability of a compound to bind to the molecule or molecular complex. This invention also provides methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention provides methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to Aurora-2 or homologues thereof.
Abstract:
The present invention relates to the X-ray analysis of crystalline molecules or molecular complexes of human Pim-1. The present invention also relates to Pim-1-like binding pockets. The present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to Pim-1 protein, Pim-1 protein complexes, or homologues thereof. The invention also relates to crystallizable compositions and crystals comprising Pim-1 protein, Pim-1 protein complexes with adenosine, staurosporine or 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one and methods to produce these crystals.
Abstract:
The present invention provides crystalline molecules or molecular complexes which comprise binding pockets of Aurora-2 or its homologues. The invention also provides crystals comprising Aurora-2. The present invention also relates to a computer comprising a data storage medium encoded with the structural coordinates of Aurora-2 binding pockets and methods of using a computer to evaluate the ability of a compound to bind to the molecule or molecular complex. This invention also provides methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention provides methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to Aurora-2 or homologues thereof.
Abstract:
The present invention relates to human Janus Kinase 3 (JAK3) and JAK3-like binding pockets. The present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to JAK3 protein or JAK3 protein homologues, or complexes thereof. The invention also relates to crystallizable compositions and crystals comprising JAK3 kinase domain and JAK3 kinase domain complexes with AMP-PNP.
Abstract:
The present invention relates to human Janus Kinase 3 (JAK3) and JAK3-like binding pockets. The present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to JAK3 protein or JAK3 protein homologues, or complexes thereof. The invention also relates to crystallizable compositions and crystals comprising JAK3 kinase domain and JAK3 kinase domain complexes with AMP-PNP.
Abstract:
The present invention relates to human Janus Kinase 3 (JAK3) and JAK3-like binding pockets. The present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to JAK3 protein or JAK3 protein homologues, or complexes thereof. The invention also relates to crystallizable compositions and crystals comprising JAK3 kinase domain and JAK3 kinase domain complexed with AMP-PNP.
Abstract:
The present invention relates to the X-ray analysis of crystalline molecules or molecular complexes of human Pim-1. The present invention also relates to Pim-1-like binding pockets. The present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to Pim-1 protein, Pim-1 protein complexes, or homologues thereof. The invention also relates to crystallizable compositions and crystals comprising Pim-1 protein, Pim-1 protein complexes with adenosine, staurosporine or 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one and methods to produce these crystals.
Abstract:
The present invention relates to human Janus Kinase 3 (JAK3) and JAK3-like binding pockets. The present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to JAK3 protein or JAK3 protein homologues, or complexes thereof. The invention also relates to crystallizable compositions and crystals comprising JAK3 kinase domain and JAK3 kinase domain complexed with AMP-PNP.