Reducing calibration testing time
    2.
    发明授权
    Reducing calibration testing time 有权
    减少校准测试时间

    公开(公告)号:US09020439B1

    公开(公告)日:2015-04-28

    申请号:US12877585

    申请日:2010-09-08

    CPC classification number: H04B7/10 H04B17/11

    Abstract: Embodiments of the present disclosure provide a method directed towards applying an average radio calibration result obtained from one or more units of a manufacturing order to another unit of the manufacturing order and performing a verification test on the other unit to determine whether the other unit is calibrated to a pre-determined specification. Other embodiments may be described and/or claimed.

    Abstract translation: 本公开的实施例提供了一种用于将从制造订单的一个或多个单元获得的平均无线电校准结果应用于制造订单的另一单元并且对另一个单元执行验证测试以确定另一个单元是否被校准的方法 到预定规格。 可以描述和/或要求保护其他实施例。

    Predictive model validation
    3.
    发明授权
    Predictive model validation 有权
    预测模型验证

    公开(公告)号:US08170841B2

    公开(公告)日:2012-05-01

    申请号:US10826947

    申请日:2004-04-16

    CPC classification number: G06Q10/04 G06Q30/02 G06Q40/025

    Abstract: Models are generated using a variety of tools and features of a model generation platform. For example, in connection with a project in which a user generates a predictive model based on historical data about a system being modeled, the user is provided through a graphical user interface a structured sequence of model generation activities to be followed, the sequence including dimension reduction, model generation, model process validation, and model re-generation.In connection with a project in which a user generates a predictive model based on historical data about a system being modeled, the user is enabled to validate the model development process with cross-validation between at least two subsets of the historical data; the validated model development process is enabled to be reapplied.

    Abstract translation: 使用模型生成平台的各种工具和功能生成模型。 例如,关于用户根据关于正被建模的系统的历史数据生成预测模型的项目,通过图形用户界面提供要遵循的模型生成活动的结构化序列,所述序列包括维度 减少,模型生成,模型过程验证和模型重新生成。 关于用户根据关于正在建模的系统的历史数据生成预测模型的项目,用户能够通过历史数据的至少两个子集之间的交叉验证来验证模型开发过程; 验证的模型开发过程能够被重新应用。

    Predictive model generation
    4.
    发明授权
    Predictive model generation 有权
    预测模型生成

    公开(公告)号:US07933762B2

    公开(公告)日:2011-04-26

    申请号:US10826630

    申请日:2004-04-16

    CPC classification number: G05B17/02

    Abstract: Models are generated using a variety of tools and features of a model generation platform. For example, in connection with a project in which a user generates a predictive model based on historical data about a system being modeled, the user is provided through a graphical user interface a structured sequence of model generation activities to be followed, the sequence including dimension reduction, model generation, model process validation, and model re-generation.Historical multi-dimensional data is received representing multiple variables transformed to be maximally predictive for at least one outcome variable to be used as an input to a predictive model of a commercial system, model development process is validated for at one or more sets of such variables and enabling a user of a model generation tool to combine at least two of the variables from the sets of variables.

    Abstract translation: 使用模型生成平台的各种工具和功能生成模型。 例如,关于用户根据关于正被建模的系统的历史数据生成预测模型的项目,通过图形用户界面提供要遵循的模型生成活动的结构化序列,所述序列包括维度 减少,模型生成,模型过程验证和模型重新生成。 接收的历史多维数据表示多个变量,以变换为对用作商业系统的预测模型的输入的至少一个结果变量进行最大预测,模型开发过程在一个或多个这样的变量集合 并使得模型生成工具的用户能够组合来自变量集合中的至少两个变量。

    CRYSTAL STRUCTURE OF HUMAN JAK3 KINASE DOMAIN COMPLEX AND BINDING POCKETS THEREOF
    5.
    发明申请
    CRYSTAL STRUCTURE OF HUMAN JAK3 KINASE DOMAIN COMPLEX AND BINDING POCKETS THEREOF 失效
    人类JAK3激酶复合体的结晶结构及其结合位点

    公开(公告)号:US20110014680A1

    公开(公告)日:2011-01-20

    申请号:US12471896

    申请日:2009-05-26

    Abstract: The present invention relates to human Janus Kinase 3 (JAK3) and JAK3-like binding pockets. The present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to JAK3 protein or JAK3 protein homologues, or complexes thereof. The invention also relates to crystallizable compositions and crystals comprising JAK3 kinase domain and JAK3 kinase domain complexed with AMP-PNP.

    Abstract translation: 本发明涉及人类Janus Kinase 3(JAK3)和JAK3样结合口袋。 本发明提供了一种计算机,其包括用这种结合口袋的结构坐标编码的数据存储介质。 本发明还涉及使用结构坐标来解决同源蛋白质或蛋白质复合物的结构的方法。 此外,本发明涉及使用结构坐标来筛选和设计结合JAK3蛋白或JAK3蛋白同源物的化合物(包括抑制性化合物)或其复合物的方法。 本发明还涉及可结晶组合物和包含与AMP-PNP复合的JAK3激酶结构域和JAK3激酶结构域的晶体。

    Crystal structure of Rho-kinase I kinase domain complexes and binding pockets thereof
    6.
    发明授权
    Crystal structure of Rho-kinase I kinase domain complexes and binding pockets thereof 有权
    Rho激酶I激酶结构域复合物的晶体结构及其结合位点

    公开(公告)号:US07655446B2

    公开(公告)日:2010-02-02

    申请号:US11478194

    申请日:2006-06-28

    CPC classification number: C12N9/1205 C07K2299/00

    Abstract: The present invention relates to human Rho-kinase I (ROCK I), ROCK I binding pockets, ROCK I-like binding pockets. More particularly, the present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to ROCK I protein or ROCK I protein homologues, or complexes thereof. The invention also relates to crystallizable compositions and crystals comprising ROCK I kinase domain and ROCK I kinase domain complexed with an inhibitor of that domain. The invention also relates to methods of identifying inhibitors of the ROCK I kinase domain.

    Abstract translation: 本发明涉及人Rho-kinase I(ROCK I),ROCK I结合口袋,ROCK I样结合口袋。 更具体地说,本发明提供了一种计算机,其包括用这种结合口袋的结构坐标编码的数据存储介质。 本发明还涉及使用结构坐标来解决同源蛋白质或蛋白质复合物的结构的方法。 此外,本发明涉及使用结构坐标筛选和设计结合ROCK I蛋白或ROCK I蛋白同源物的化合物(包括抑制性化合物)或其复合物的方法。 本发明还涉及包含与该结构域的抑制剂复合的ROCK I激酶结构域和ROCK I激酶结构域的可结晶组合物和晶体。 本发明还涉及鉴定ROCK I激酶结构域的抑制剂的方法。

    Crystal structure of human JAK3 kinase domain complex and binding pockets thereof
    7.
    发明授权
    Crystal structure of human JAK3 kinase domain complex and binding pockets thereof 失效
    人类JAK3激酶结构域复合物的晶体结构及其结合口袋

    公开(公告)号:US07558717B2

    公开(公告)日:2009-07-07

    申请号:US11114979

    申请日:2005-04-26

    Abstract: The present invention relates to human Janus Kinase 3 (JAK3) and JAK3-like binding pockets. The present invention provides a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. This invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. In addition, this invention relates to methods of using the structure coordinates to screen for and design compounds, including inhibitory compounds, that bind to JAK3 protein or JAK3 protein homologues, or complexes thereof. The invention also relates to crystallizable compositions and crystals comprising JAK3 kinase domain and JAK3 kinase domain complexed with AMP-PNP.

    Abstract translation: 本发明涉及人类Janus Kinase 3(JAK3)和JAK3样结合口袋。 本发明提供了一种计算机,其包括用这种结合口袋的结构坐标编码的数据存储介质。 本发明还涉及使用结构坐标来解决同源蛋白质或蛋白质复合物的结构的方法。 此外,本发明涉及使用结构坐标来筛选和设计结合JAK3蛋白或JAK3蛋白同源物的化合物(包括抑制性化合物)或其复合物的方法。 本发明还涉及可结晶组合物和包含与AMP-PNP复合的JAK3激酶结构域和JAK3激酶结构域的晶体。

    Predictive model augmentation by variable transformation
    8.
    发明申请
    Predictive model augmentation by variable transformation 失效
    通过变量变换预测模型增加

    公开(公告)号:US20050234763A1

    公开(公告)日:2005-10-20

    申请号:US10826950

    申请日:2004-04-16

    CPC classification number: G06Q10/04 G06Q30/0201

    Abstract: Models are generated using a variety of tools and features of a model generation platform. For example, in connection with a project in which a user generates a predictive model based on historical data about a system being modeled, the user is provided through a graphical user interface a structured sequence of model generation activities to be followed, the sequence including dimension reduction, model generation, model process validation, and model re-generation. Historical multi-dimensional data is received representing multiple source variables to be used as an input to a predictive model of a commercial system and applying transformations to the data that are selected based on the strength of measurement represented by a variable; variables are transformed into new more predictive variables, including the Bayesian renormalization of sparsely sampled variable and including the imputation of missing values for categorical or continuous variables.

    Abstract translation: 使用模型生成平台的各种工具和功能生成模型。 例如,关于用户根据关于正被建模的系统的历史数据生成预测模型的项目,通过图形用户界面提供要遵循的模型生成活动的结构化序列,所述序列包括维度 减少,模型生成,模型过程验证和模型重新生成。 接收表示多个源变量的历史多维数据,以用作商业系统的预测模型的输入,并且基于由变量表示的测量强度来选择的数据进行变换; 变量被变换成新的更具预测性的变量,包括稀疏抽样变量的贝叶斯重正化,包括对分类或连续变量的缺失值的插补。

Patent Agency Ranking