Abstract:
A DC to AC converter includes a first switch, a second switch, a first half bridge inverter, and a second half bridge inverter. The first switch includes a first terminal and a second terminal. The second switch includes a first terminal and a second terminal. A portion between the first terminal of the first switch and the first terminal of the second switch is operable to receive a direct current power source. The first half bridge inverter includes a first terminal, a second terminal, and an output terminal. The second half bridge inverter includes a first terminal, a second terminal, and an output terminal. A portion between the output terminal of the first half bridge inverter and the output terminal of the second half bridge inverter is operable to output an alternative current.
Abstract:
An inverter including a switch circuit for converting a DC power to output an AC voltage between a first output terminal and a second output terminal is provided. The switch circuit includes a first switch branch having a first switch element, a second switch element, and a third switch element; a second switch branch having a fourth switch element, a fifth switch element, and a sixth switch element; a first freewheeling unit connected to the first switch element, the second switch element, and the second output terminal for providing a freewheeling path between the second output terminal and the first switch element and the second switch element; and a second freewheeling unit connected to the fourth switch element and the fifth switch element and the first output terminal for providing a freewheeling path between the first output terminal and the fourth switch element and the fifth switch element.
Abstract:
A hybrid DC-to-AC conversion system includes a first DC input voltage, a second DC input voltage, a power conversion apparatus, and a comparison unit. The power conversion apparatus is connected in parallel to the first DC input voltage and the second DC input voltage to convert the first DC input voltage or the second DC input voltage into an AC output voltage. The comparison unit receives the AC output voltage and an external reference voltage. The comparison unit outputs a control signal to make the first DC input voltage supply a load when an absolute value of the AC output voltage is less than or equal to the external reference voltage, whereas the comparison unit outputs the control signal to make the second DC input voltage supply the load when the absolute value of the AC output voltage is greater than the external reference voltage.
Abstract:
The configurations of an inverter circuit are provided in the present invention. The proposed circuit includes a first bridge arm having a first sub-bridge arm with a first switch and a first middle point coupled to the first switch, and a second sub-bridge arm with a second switch and a second middle point coupled to the second switch, a first inductor having a first terminal coupled to the first middle point and a second terminal, and a second inductor having a first terminal coupled to the second middle point, and a second terminal coupled to the second terminal of the first inductor and outputting an AC voltage.
Abstract:
Disclosed is a DC-AC converter including a switch circuit for converting the DC power to output an AC voltage between a first output terminal and a second output terminal. The switch circuit includes a first switch branch having a first switch element and a second switch element; a second switch branch having a third switch element, a fourth switch element, and a fifth switch element; and a sixth switch element having one end connected between the third switch element and the fourth switch element and the other end connected between the first switch element and the second switch element. The first switch element, the second switch element, the third switch element, the fourth switch element, the fifth switch element, and the sixth switch element are configured to turn on/off to enhance the conversion efficiency of the DC-AC converter and subdue the occurrence of leak current in the DC-AC converter.
Abstract:
A power management apparatus and a method of operating the same are disclosed. The power management apparatus includes a power conversion unit, a first sensing unit, a second sensing unit, a switch unit, and a control unit. The power conversion unit converts output power generated from at least one renewable energy generation apparatus. The first sensing unit is provided to sense a first current and a first voltage and the second sensing unit is provided to sense a second current and a second voltage. The control unit acquires an output power generated from the renewable energy generation apparatus and acquires a feedback power to an AC utility according to the currents and the voltages when the control unit turns on the switch unit.
Abstract:
Disclosed is a DC-AC converter including a switch circuit for converting the DC power to output an AC voltage between a first output terminal and a second output terminal. The switch circuit includes a first switch branch having a first switch element and a second switch element; a second switch branch having a third switch element, a fourth switch element, and a fifth switch element; and a sixth switch element having one end connected between the third switch element and the fourth switch element and the other end connected between the first switch element and the second switch element. The first switch element, the second switch element, the third switch element, the fourth switch element, the fifth switch element, and the sixth switch element are configured to turn on/off to enhance the conversion efficiency of the DC-AC converter and subdue the occurrence of leak current in the DC-AC converter.
Abstract:
A DC-to-AC converting circuit includes a transformer, a first modulation switching circuit, a second modulation switching circuit and a third modulation switching circuit, an inverter switching circuit and a controlling unit. Under control of the controlling unit, two of the first, second and third modulation switching circuits are selectively enabled according to the magnitude of the input voltage, so that electric energy of the input voltage is magnetically transmitted to the first primary winding, a second primary winding or a serially-connected winding assembly of the first primary winding and the second primary winding, and a turn ratio of the transformer is adjustable.
Abstract:
A photovoltaic powered system with an adaptive power control and a method of operating the same. A photovoltaic panel is provided to generate electric power to supply a load. The photovoltaic powered system includes a charging control unit, a rechargeable battery unit, a first switch unit, a second switch unit, a power condition unit, and a switch control unit. The switch control unit turns on the first switch unit and turns off the second switch unit when the photovoltaic panel can generate the electric power, thus supplying the load and charging the rechargeable battery unit, respectively. The switch control unit turns off the first switch unit and turns on the second switch unit when the photovoltaic panel cannot generate the electric power, thus providing energy stored in the rechargeable battery unit to supply the load.
Abstract:
A power management apparatus and a method of operating the same are disclosed. The power management apparatus includes a power conversion unit, a first sensing unit, a second sensing unit, a switch unit, and a control unit. The power conversion unit converts output power generated from at least one renewable energy generation apparatus. The first sensing unit is provided to sense a first current and a first voltage and the second sensing unit is provided to sense a second current and a second voltage. The control unit acquires an output power generated from the renewable energy generation apparatus and acquires a feedback power to an AC utility according to the currents and the voltages when the control unit turns on the switch unit.