Abstract:
A transmitter includes a first circuit to generate multiphase pulses, and a second circuit to mix a set of in-phase (I) data and quadrature (Q) data with the multiphase pulses and to generate an output radiofrequency (RF) signal. The multiple pulses include multiple I pulses and multiple Q pulses each comprising a pulse that includes a duty cycle such that a first null appears at a third harmonic frequency in a frequency spectrum of the pulse.
Abstract:
A hybrid analog-digital electronic circuit for solving non-linear programming problems includes an analog circuit and a digital microcontroller interconnected to each other by an analog-to-digital converter (ADC) and a digital-to-analog converter (DAC). The analog circuit physically realizes a nonlinear programming problem (NLP) where voltages in the analog circuit represent variables in the NLP, and the interconnection of the analog circuit components enforce Karush-Kuhn-Tucke r (KKT) conditions on the variables, such that the voltages in the analog circuit that represent the variables of the NLP naturally converge to an optimal and feasible solution of the NLP. The digital microcontroller sets the voltages in the analog circuit at particular nodes in the analog circuit through the DAC, where the voltages set at the particular nodes determine a precise cost function to be minimized by the analog circuit, where the voltages set at the particular nodes are computed by the digital microcontroller based on measurements obtained from the analog circuit through the ADC.
Abstract:
A device can be used for compensating bandwidth mismatches of time interleaved analog to digital converters. A processor of the device determines, for each original sample stream, an estimated difference between the time constant of a low pass filter representative of the corresponding converter and a reference time constant of a reference low pass filter, and uses this estimated difference and a filtered stream to correct the original stream and deliver a corrected stream of corrected samples.
Abstract:
There is disclosed current-mode time-interleaved sampling circuitry configured to be driven by substantially sinusoidal clock signals. Such circuitry may be incorporated in ADC circuitry, for example as integrated circuitry on an IC chip. The disclosed circuitry is capable of calibrating itself without being taken off-line.
Abstract:
Distortion and aliasing reduction for digital to analog conversion. Synthesis of one or more distortion terms made based on a digital signal (e.g., one or more digital codewords) is performed in accordance with digital to analog conversion. The one or more distortion terms may correspond to aliased higher-order harmonics, distortion, nonlinearities, clipping, etc. Such distortion terms may be known a priori, such as based upon particular characteristics of a given device, operational history, etc. Alternatively, such distortion terms may be determined based upon operation of a device and/or based upon an analog signal generated from the analog to conversion process. For example, frequency selective measurements made based on an analog signal generated from the digital to analog conversion may be used for determination of and/or adaptation of the one or more distortion terms. One or more DACs may be employed within various architectures operative to perform digital to analog conversion.
Abstract:
Distortion and aliasing reduction for digital to analog conversion. Synthesis of one or more distortion terms made based on a digital signal (e.g., one or more digital codewords) is performed in accordance with digital to analog conversion. The one or more distortion terms may correspond to aliased higher-order harmonics, distortion, nonlinearities, clipping, etc. Such distortion terms may be known a priori, such as based upon particular characteristics of a given device, operational history, etc. Alternatively, such distortion terms may be determined based upon operation of a device and/or based upon an analog signal generated from the analog to conversion process. For example, frequency selective measurements made based on an analog signal generated from the digital to analog conversion may be used for determination of and/or adaptation of the one or more distortion terms. One or more DACs may be employed within various architectures operative to perform digital to analog conversion.
Abstract:
Distortion and aliasing reduction for digital to analog conversion. Synthesis of one or more distortion terms made based on a digital signal (e.g., one or more digital codewords) is performed in accordance with digital to analog conversion. The one or more distortion terms may correspond to aliased higher-order harmonics, distortion, nonlinearities, clipping, etc. Such distortion terms may be known a priori, such as based upon particular characteristics of a given device, operational history, etc. Alternatively, such distortion terms may be determined based upon operation of a device and/or based upon an analog signal generated from the analog to conversion process. For example, frequency selective measurements made based on an analog signal generated from the digital to analog conversion may be used for determination of and/or adaptation of the one or more distortion terms. One or more DACs may be employed within various architectures operative to perform digital to analog conversion.
Abstract:
There is disclosed current-mode time-interleaved sampling circuitry configured to be driven by substantially sinusoidal clock signals. Such circuitry may be incorporated in ADC circuitry, for example as integrated circuitry on an IC chip. The disclosed circuitry is capable of calibrating itself without being taken off-line.
Abstract:
Polyphase nonlinear digital predistorters (pNDPs) mitigate nonlinear distortions generated by time-interleaved digital-to-analog converters (TIDACs). Processors in an example pNDP compute nonlinear and linear compensation terms representative of channel mismatches and other imperfections in the TIDAC based on the digital input to the TIDAC. The pNDP subtracts these compensation terms from a delayed copy of the digital input to yield a predistorted digital input. The TIDAC converts on the predistorted digital input into a fullband analog output that is substantially free of nonlinear distortion.
Abstract:
Systems and methods for providing a mechanism by which digital signals can be converted to analog signals with an efficient structure that reduces the number of filters required by providing a mechanism for cancelling images that would otherwise be generated By adjusting three parameters in the system, a selection can be made as to whether to generate upper sidebands, lower sidebands and in which direction the envelope of the output from the system will be skewed.