Abstract:
Biocompatible intraocular implants include an alpha-2 adrenergic receptor agonist and a polymer associated with the alpha-2 adrenergic receptor agonist to facilitate release of the alpha-2 adrenergic receptor agonist into an eye for an extended period of time. The alpha-2 adrenergic receptor agonist may be associated with a biodegradable polymer matrix, such as a matrix of a two biodegradable polymers. The implants can be placed in an eye to treat one or more ocular conditions, such as an ocular vasculopathy or glaucoma, including reduction of an elevated intraocular pressure.
Abstract:
Biocompatible implants comprising a cyclic lipid therapeutic agent are made using a low temperature melt extrusion process. The implants are suitable for intraocular use to treat an ocular condition.
Abstract:
Biocompatible intraocular implants include a steroid and an auxiliary agent, where the auxiliary agent is present in an amount sufficient to lessen the severity of at least one side effect compared to the use of an otherwise identical implant lacking said auxiliary agent. The steroid and the auxiliary agent may be present on the same intraocular implant or on different implants. The steroid and auxiliary agent may be associated with a biodegradable polymer matrix, such as a matrix of a two biodegradable polymers. Or, the steroid may be associated with a polymeric coating having one or more openings effective to permit the steroid to be released into an external environment. The implants containing the steroid and an auxiliary agent may be placed in an eye to treat one or more ocular conditions while reducing the side effects otherwise accompanying steroid use.
Abstract:
Biocompatible intraocular implants include an alpha-2 adrenergic receptor agonist and a polymer associated with the alpha-2 adrenergic receptor agonist to facilitate release of the alpha-2 adrenergic receptor agonist into an eye for an extended period of time. The alpha-2 adrenergic receptor agonist may be associated with a biodegradable polymer matrix, such as a matrix of a two biodegradable polymers. The implants can be placed in an eye to treat one or more ocular conditions, such as an ocular vasculopathy or glaucoma, including reduction of an elevated intraocular pressure.
Abstract:
Biocompatible intraocular implants include a steroid and an auxiliary agent, where the auxiliary agent is present in an amount sufficient to lessen the severity of at least one side effect compared to the use of an otherwise identical implant lacking said auxiliary agent. The steroid and the auxiliary agent may be present on the same intraocular implant or on different implants. The steroid and auxiliary agent may be associated with a biodegradable polymer matrix, such as a matrix of a two biodegradable polymers. Or, the steroid may be associated with a polymeric coating having one or more openings effective to permit the steroid to be released into an external environment. The implants containing the steroid and an auxiliary agent may be placed in an eye to treat one or more ocular conditions while reducing the side effects otherwise accompanying steroid use.
Abstract:
The present invention relates to drug delivery systems comprising ocular implant, which include organic molecules, capable of modulating tyrosine kinase signal transduction in order to regulate, modulate and/or inhibit abnormal cell proliferation, in combination with a polymer, which polymer serves to control, modify, modulate and/or slow the release of the therapeutic component into the environment of the eye in which said composite is placed.
Abstract:
Biocompatible, bioerodible sustained release implants and microspheres for intracameral or anterior vitreal placement include an anti-hypertensive agent and a biodegradable polymer effective to treat an ocular hypertensive condition (such as glaucoma) by relapsing therapeutic amount of the anti-hypertensive agent over a period of time between 10 days and 1 year.
Abstract:
Acrylic, self-adhesive postage stamps are provided and include a flexible facestock bearing an acrylic pressure-sensitive adhesive (PSA), protected by a release liner. The acrylic PSA is a tackified or inherently tacky polymer formed from a plurality of monomers comprising, based on the total weight of monomeric composition, essentially of (i) 9 to 40% isobornyl acrylate and (ii) 50 to 91% of one or more alkyl acrylates.
Abstract:
There are disclosed normally tacky, pressure-sensitive adhesive compositions comprising one or more normally tacky polymers having a T.sub.g of about 0.degree. C. or less and containing pendant functional groups attached to the backbone and having the formula: ##STR1## in which R.sub.1 is a divalent organic radical at least 3 atoms in length, and X is organoacyl or cyano, the polymers preferably also being normally tacky when cured. Such polymers have markedly improved cohesive strength (shear holding value) with little or no detriment to adhesive tack or adhesion (peel resistance), and these improvements are realized without the necessity of incorporating cross-linking monomers such as N-methylolamides or other cross-linking agents. Pressure-sensitive adhesive, water-based emulsions containing such polymers and pressure-sensitive adhesive articles comprising a substrate having at least a portion of one surface thereof coated with the adhesive compositions are also disclosed. In a preferred embodiment, the adhesive compositions further include a polyacid component for further improving cohesive strength, particularly at acidic pH.
Abstract:
Biocompatible intraocular implants include a steroid and an auxiliary agent, where the auxiliary agent is present in an amount sufficient to lessen the severity of at least one side effect compared to the use of an otherwise identical implant lacking said auxiliary agent. The steroid and the auxiliary agent may be present on the same intraocular implant or on different implants. The steroid and auxiliary agent may be associated with a biodegradable polymer matrix, such as a matrix of a two biodegradable polymers. Or, the steroid may be associated with a polymeric coating having one or more openings effective to permit the steroid to be released into an external environment. The implants containing the steroid and an auxiliary agent may be placed in an eye to treat one or more ocular conditions while reducing the side effects otherwise accompanying steroid use.