Abstract:
Described herein is an optically controlled electrical-switch device which includes a first current-conduction terminal and a second current-conduction terminal, and a carbon nanotube connected between the first and the second current-conduction terminals, the carbon nanotube being designed to be impinged upon by electromagnetic radiation and having an electrical conductivity that can be varied by varying the polarization of the electromagnetic radiation incident thereon. In particular, the carbon nanotube may for example, in given conditions of electrical biasing, present a high electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially parallel to the axis of the carbon nanotube itself, and a reduced electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially orthogonal to the axis of the carbon nanotube itself.
Abstract:
Described herein is an optically controlled electrical-switch device which includes a first current-conduction terminal and a second current-conduction terminal, and a carbon nanotube connected between the first and the second current-conduction terminals, the carbon nanotube being designed to be impinged upon by electromagnetic radiation and having an electrical conductivity that can be varied by varying the polarization of the electromagnetic radiation incident thereon. In particular, the carbon nanotube may for example, in given conditions of electrical biasing, present a high electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially parallel to the axis of the carbon nanotube itself, and a reduced electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially orthogonal to the axis of the carbon nanotube itself.
Abstract:
Described herein is an optically controlled electrical-switch device which includes a first current-conduction terminal and a second current-conduction terminal, and a carbon nanotube connected between the first and the second current-conduction terminals, the carbon nanotube being designed to be impinged upon by electromagnetic radiation and having an electrical conductivity that can be varied by varying the polarization of the electromagnetic radiation incident thereon. In particular, the carbon nanotube may for example, in given conditions of electrical biasing, present a high electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially parallel to the axis of the carbon nanotube itself, and a reduced electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially orthogonal to the axis of the carbon nanotube itself.
Abstract:
Described herein is an optically controlled electrical-switch device which includes a first current-conduction terminal and a second current-conduction terminal, and a carbon nanotube connected between the first and the second current-conduction terminals, the carbon nanotube being designed to be impinged upon by electromagnetic radiation and having an electrical conductivity that can be varied by varying the polarization of the electromagnetic radiation incident thereon. In particular, the carbon nanotube may for example, in given conditions of electrical biasing, present a high electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially parallel to the axis of the carbon nanotube itself, and a reduced electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially orthogonal to the axis of the carbon nanotube itself.
Abstract:
Described herein is an optically readable memory device comprising a molecular memory obtained using carbon nanotubes. In particular, the molecular memory uses, as memory element, a bundle of carbon nanotubes, for which it is possible to obtain at least two stable states by modifying their geometrical configuration and, consequently, their optical transmission properties.
Abstract:
Described herein is an optically controlled electrical-switch device which includes a first current-conduction terminal and a second current-conduction terminal, and a carbon nanotube connected between the first and the second current-conduction terminals, the carbon nanotube being designed to be impinged upon by electromagnetic radiation and having an electrical conductivity that can be varied by varying the polarization of the electromagnetic radiation incident thereon. In particular, the carbon nanotube may for example, in given conditions of electrical biasing, present a high electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially parallel to the axis of the carbon nanotube itself, and a reduced electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially orthogonal to the axis of the carbon nanotube itself.
Abstract:
Described herein is an optically controlled electrical-switch device which includes a first current-conduction terminal and a second current-conduction terminal, and a carbon nanotube connected between the first and the second current-conduction terminals, the carbon nanotube being designed to be impinged upon by electromagnetic radiation and having an electrical conductivity that can be varied by varying the polarization of the electromagnetic radiation incident thereon. In particular, the carbon nanotube may for example, in given conditions of electrical biasing, present a high electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially parallel to the axis of the carbon nanotube itself, and a reduced electrical conductivity when it is impinged upon by electromagnetic radiation having a given wavelength and a polarization substantially orthogonal to the axis of the carbon nanotube itself.