Abstract:
The invention is directed to a magnetic write head configured for writing to a magnetic medium, such as, a magnetic tape along a longitudinal direction x. The magnetic write head includes a trailing pole with a first face of height r1; a leading pole with a second face, each of the first face and second face being arranged to face the magnetic medium in operation; and a magnetic gap of height g between the trailing pole and the leading pole. The height r1 and the height g are such that r1≦1.0 g and each of the height g and the height r1 is measured parallel to said longitudinal direction x.
Abstract:
A method and a scanning probe microscope (SPM) for scanning a surface of a material. The method and SPM have a cantilever sensor configured to exhibit both a first spring behavior and a second, stiffer spring behavior. While operating the SPM in contact mode, the sensor is scanned on the material surface and a first spring behavior of the sensor (e.g. a fundamental mode of flexure thereof) is excited by deflection of the sensor by the material surface. Also while operating the SPM in contact mode, excitation means are used to excite a second spring behavior of the sensor at a resonance frequency thereof (e.g. one or more higher-order resonant modes) of the cantilever sensor to modulate an interaction of the sensor and the material surface and thereby reduce the wearing of the material surface.
Abstract:
The present invention relates to a method of reducing the wear of a tip of a probe when the tip is in contact with a surface of a substrate and when the probe is mounted on a support structure. A method is provided where a load force is applied to the probe, thereby causing the tip to be maintained substantially in contact with the substrate surface and a modulation step where the e magnitude of the load force is modulated at a modulation frequency. The modulation frequency is selected to be greater than a fundamental vibration frequency of the support structure on which the probe is mounted.
Abstract:
There is disclosed a tape guide roller for guiding a tape (11) in a tape storage. The tape guide roller is tiltable such that by tilting the tape guide roller the tape (11) may be returned from a laterally offset position to a centered position. An actuator (1560) of the tiltable tape guide roller is implemented as a magnetic actuator with a permanent magnet assembly (1570) and an electromagnet a pole piece (1702) of which electromagnet is facing the magnet assembly (1570). The width (W1) of the pole piece (1702) is smaller than the width (W2) of the magnet assembly (1570). As a result the tape guide roller may be operated in a power efficient way.
Abstract:
A tape mounting apparatus for a magnetic tape data storage device which includes a movable structure movably attached to a base. The movable structure moves partially within the base and is powered by a motor unit. The moveable structure has at least a load position and a transport position. A tape guide device is positioned within the movable structure such that a tape passes over the tape guide device and between a tape reading head and the tape guide device. The base is attached to a body of a magnetic tape data storage drive.
Abstract:
The present invention relates to a method of reducing the wear of a tip of a probe when the tip is in contact with a surface of a substrate and when the probe is mounted on a support structure. A method is provided where a load force is applied to the probe, thereby causing the tip to be maintained substantially in contact with the substrate surface and a modulation step where the e magnitude of the load force is modulated at a modulation frequency. The modulation frequency is selected to be greater than a fundamental vibration frequency of the support structure on which the probe is mounted.
Abstract:
A tape mounting apparatus for a magnetic tape data storage device which includes a movable structure movably attached to a base. The movable structure moves partially within the base and is powered by a motor unit. The moveable structure has at least a load position and a transport position. A tape guide device is positioned within the movable structure such that a tape passes over the tape guide device and between a tape reading head and the tape guide device. The base is attached to a body of a magnetic tape data storage drive.
Abstract:
The present invention provides a pressure sensor. The pressure sensor comprises a substrate with several support structures attached to the substrate. The pressure sensor further includes a strut structure integrated with a heating element. The strut structure is engaged with the support structures so as to create an air gap between the heating element and the substrate. The heating element has an electrical resistance proportional to changes in air pressure in the air gap.
Abstract:
Timing based servo bursts of servo frames, in which the frames are arranged to be symmetric with the same number of servo stripes in each burst of a frame, are synchronized by shifting selected bits. For example, servo frames are arranged with four servo bursts with an equal number of servo stripes in each burst, the servo frames comprising two symmetric sub-frames, each sub-frame comprising two bursts of servo stripes that are parallel to each other within a burst, and the bursts are non-parallel with respect to each other; each servo burst is arranged to comprise at least one reference servo stripe; and each servo burst is arranged to comprise at least one shifted servo stripe, wherein the shift is in the same longitudinal direction with respect to at least one reference servo stripe for each burst of a frame and the opposite longitudinal direction for bursts of sequentially adjacent frames.
Abstract:
A switch for providing a control function is provided. The switch is comprised of an actuator. The actuator comprises a base portion, a cantilever beam connected to the base portion, and an actuator cell adjacent to the cantilever beam. The actuator cell comprises a first metal electrode positioned on the cantilevered beam, a second metal electrode positioned near the first metal electrode, and phase change material between the first and second metal electrodes, wherein the phase change material connects the first metal electrode to the second metal electrode, wherein applying a burst of energy to the phase change material causes the phase change material to change between an amorphous state and a crystalline state, causing the cantilevered beam to move between a first position and a target position and wherein the cantilevered beam remains at the target position upon removal of the energy thereby activating the control function.