Abstract:
A vacuum insulator (10) includes: a core (13); a pressure sensor (51) that detects a pressure; a transmitter (52) that transmits, by wireless communication, the detected pressure detected by the pressure sensor (51); a power feeder (53) that feeds electric power to the pressure sensor (51) and the transmitter (52); and an outer skin (14), an inside of which is decompressed, the outer skin (14) accommodating therein the core (13), the pressure sensor (51), the transmitter (52), and the power feeder (53), the outer skin (14) having gas barrier capability.
Abstract:
A heat-loss pressure microsensor for measuring a gas pressure is disclosed that includes a plurality of pressure gauges arranged proximate to one another on a substrate. The gauges may include a pair of gauges, each gauge including a thermistor having an electrical resistance that varies with its temperature, the thermistor's temperature being responsive to the gas pressure, a platform to receive the thermistor, and a support structure to hold the platform above the substrate. Each gauge may be configured to produce a gauge output signal related to the electrical resistance of its thermistor. The two gauges are configured with their platforms having equal nominal perimeters and different nominal surface areas, and their support structures having the same nominal geometry. A differential signal may be obtained from the two gauge output signals. The differential signal conveys information about the gas pressure and exhibits reduced sensitivity to fabrication-related dimensional variations.
Abstract:
A pressure sensing device that includes a pressure sensing element that is of microscopic scale and has a pressure level dependent thermal parameter; a signal source that is configured to supply an input electrical signal to the pressure sensing element; and a monitor that is configured to (a) measure electrical output signals generated by the pressure sensing element as a result of the supply of the input electrical signal and (b) estimate a pressure level applied on the pressure sensing element based on the electrical output signals.
Abstract:
A system for determining a gas pressure or gauging a vacuum in a hermetically sealed enclosure. One or more heater structures and one or more temperature sensor structures situated on a substrate may be used in conjunction for measuring a thermal conductivity of a gas in the enclosure. Each heater has significant thermal isolation from each sensor structure. Electronics connected to each heater and sensor of their respective structures may provide processing to calculate the pressure or vacuum in the enclosure. The enclosure may contain various electronic components such as bolometers.
Abstract:
In a resistively heated heat-loss pressure gauge, electrical current is switched between a sensing element and a compensating element at different duty cycles. As a result, the sensing element is heated relative to the compensating element. A fixed resistance is placed in series with at least the compensating element. The current source applies current to heat the sensing element to a temperature at which the resistance of the sensing element matches the combined resistance of the compensating element and the fixed resistive element.
Abstract:
A thermal pressure sensor monitors pressure by measuring effects caused by variations of thermal conductivity between a member and a substrate to which the member is adhered by stiction. The interface between the member and the substrate behaves as an extremely narrow gap. In a preferred embodiment the member is a bridge extending between a pair of cantilever arms. Two pressure sensors may be combined in a Wheatstone bridge configuration. A method for fabricating a pressure sensor according to the invention comprises forming a layer of oxide on a substrate, depositing a layer of material on the oxide layer, forming the member from the layer of material, removing the oxide layer and then bringing the member into contact with the substrate. The portion of the substrate under the member may be patterned with plateaus and valleys.
Abstract:
A pressure sensor includes a first diaphragm having a first surface receiving pressure, a first thermal detection section located opposite a central section of the first diaphragm, and a second thermal detection section having little displacement by pressure, and located opposite the first diaphragm The pressure sensor amplifies and outputs a difference between the first thermal detection section for pressure measurement and the second thermal detection section for reference output. Since the diaphragm to which the second thermal detection section is opposed is equal in thickness to the diaphragm to which the first thermal detection section is opposed, pressure can be accurately measured relative to a sudden change in atmospheric temperature.
Abstract:
An apparatus and a method for measuring an altitude of a terminal which can correct an altitude error according to temporal and spatial changes are provided. The apparatus includes an atmospheric pressure measuring unit for measuring an atmospheric pressure from a barometer included in the terminal, a position determiner for measuring position information of the terminal, and a controller for, when a reference atmospheric pressure reception period is not generated, predicting a current reference atmospheric pressure by using previously received reference atmospheric pressures and measuring a current altitude by using the predicted reference atmospheric pressure and the measured atmospheric pressure.