摘要:
An illumination system for a microlithography projection exposure apparatus for illuminating an illumination field with the light from an assigned light source includes a pupil shaping unit for receiving light from the assigned light source and for generating a predeterminable basic light distribution in a pupil plane of the illumination system, and a transmission filter assigned to the pupil shaping unit and having at least one array of individually drivable individual elements for the spatially resolving transmission filtering of the light impinging on the transmission filter in or in proximity to a pupil plane of the illumination system. The transmission filter generates a predetermined correction of the basic light distribution. An illumination system of this type can generate a multiplicity of location-dependent intensity distributions in a pupil plane of the illumination system, and ensure a high transmittance.
摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
In a projection objective provided for imaging a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the aid of an immersion medium arranged between a last optical element of the projection objective in the light path and the image plane, the last optical element has a transparent substrate and a protective layer system that is fitted to the substrate, is provided for contact with the immersion medium and serves for increasing the resistance of the last optical element to degradation caused by the immersion medium.
摘要:
An optical beam transformation system, which can be designed to be utilized in an illuminating system of a microlithograpic projection exposure apparatus, has a sequence of optical elements arranged along an optical axis of the optical beam transformation system and designed for transforming an entrance light distribution striking an entrance surface of the optical beam transformation system into an exit light distribution emerging from an exit surface of the optical beam transformation system by radial redistribution of light intensity. The optical elements include at least one transformation element causing a radial redistribution of light intensity and having at least one transformation surface inclined to the optical axis and causing a polarization-selective reflection of a light distribution incident on the transformation surface according to an efficiency symmetry characteristic for the transformation surface. The optical elements further include at least one optical compensation element effecting a spatially dependent compensation of transmission inhomogeneties caused by the polarization-selective reflection at the transformation surface according to a compensation symmetry adapted to the efficiency symmetry of the transformation surface. Axicon elements with axicon surfaces may be used as transformation elements.
摘要:
An illumination system for a microlithography projection exposure apparatus for illuminating an illumination field with the light from an assigned light source includes a pupil shaping unit for receiving light from the assigned light source and for generating a predeterminable basic light distribution in a pupil plane of the illumination system, and a transmission filter assigned to the pupil shaping unit and having at least one array of individually drivable individual elements for the spatially resolving transmission filtering of the light impinging on the transmission filter in or in proximity to a pupil plane of the illumination system. The transmission filter generates a predetermined correction of the basic light distribution. An illumination system of this type can generate a multiplicity of location-dependent intensity distributions in a pupil plane of the illumination system, and ensure a high transmittance.
摘要:
An illumination system for a microlithography projection exposure apparatus for illuminating an illumination field with the light from an assigned light source includes a pupil shaping unit for receiving light from the assigned light source and for generating a predeterminable basic light distribution in a pupil plane of the illumination system, and a transmission filter assigned to the pupil shaping unit and having at least one array of individually drivable individual elements for the spatially resolving transmission filtering of the light impinging on the transmission filter in or in proximity to a pupil plane of the illumination system. The transmission filter generates a predetermined correction of the basic light distribution. An illumination system of this type can generate a multiplicity of location-dependent intensity distributions in a pupil plane of the illumination system, and ensure a high transmittance.
摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
An illumination system for a microlithography projection exposure installation is used to illuminate an illumination field with the light from a primary light source (11). The illumination system has a light distribution device (25) which receives light from the primary light source and, from this light, produces a two-dimensional intensity distribution which can be set variably in a pupil-shaping surface (31) of the illumination system. The light distribution device has at least one optical modulation device (20) having a two-dimensional array of individual elements (21) that can be controlled individually in order to change the angular distribution of the light incident on the optical modulation device. The device permits the variable setting of extremely different illuminating modes without replacing optical components.
摘要:
An illumination system is provided with a light produced by a light source, with an optical axis and with optical elements, in particular for a projection exposure machine in semiconductor lithography, having at least one optical element for producing a pupil distribution of the light beam, and having a homogenizing element for homogenizing the intensity of the light. For an asymmetric pupil distribution at least the optical elements that produce non-rotationally symmetrical light distributions, and/or the homogenizing element are supported rotatably about the optical axis that forms a z-axis of an x-/y-coordinate system, it being possible to set at least one rotational angle a in such a way that the pupil distribution is located on an axis or symmetrically in relation to an axis of an x′-/y′-coordinate system newly formed by the rotational angle a by means of rotating the x-/y-coordinate system by the angle a.
摘要:
An illumination system for a microlithography projection exposure apparatus for illuminating an illumination field (65) with the light from an assigned light source (11) comprises a pupil shaping unit (15, 30) for receiving light from the assigned light source (11) and for generating a predeterminable basic light distribution in a pupil plane (31) of the illumination system and a transmission filter (36) assigned to the pupil shaping unit (15, 30) and having at least one array of individually drivable individual elements for the spatially resolving transmission filtering of the light impinging on the transmission filter in or in proximity to a pupil plane (31, 35) of the illumination system, the transmission filter (36) being designed for generating a predeterminable correction of the basic light distribution. An illumination system of this type can generate a multiplicity of location-dependent intensity distributions in a pupil plane of the illumination system, a high transmittance being ensured. The location-dependent intensity distribution in the pupil plane generates an angle-dependent intensity distribution on the illumination field of the illumination system which can be optimized for a mask structure to be imaged.