摘要:
An optical imaging system serving for imaging a pattern arranged in an object plane of the imaging system into an image plane of the imaging system with the aid of electromagnetic radiation from a wavelength range around a main wavelength λ0 has a multiplicity of mirrors. Each mirror has a mirror surface having a reflective layer arrangement having a sequence of individual layers.
摘要:
EUV-mirror having a substrate (S) and a layer arrangement that includes plural layer subsystems (P″, P′″) each consisting of a periodic sequence of at least two periods (P2, P3) of individual layers. The periods (P2, P3) include two individual layers composed of different materials for a high refractive index layer (H″, H′″) and a low refractive index layer (L″, L′″) and have within each layer subsystem (P″, P′″) a constant thickness (d2, d3) that deviates from that of the periods of an adjacent layer subsystem. In one alternative, the layer subsystem (P″) second most distant from the substrate has a period sequence (P2) such that the first high refractive index layer (H′″) of the layer subsystem (P′″) most distant from the substrate directly succeeds the last high refractive index layer (H″) of the layer subsystem (P″) second most distant from the substrate
摘要:
EUV mirror with a layer arrangement on a substrate. The layer arrangement includes a plurality of layer subsystems each consisting of a periodic sequence of at least one period of individual layers. The periods include two individual layers composed of different material for a high refractive index layer and a low refractive index layer and have within each subsystem a constant thickness that deviates from a period thickness of an adjacent layer subsystem. The subsystem most distant from the substrate has (i) a number of periods greater than the number of periods for the layer subsystem that is second most distant from the substrate and/or (ii) a thickness of the high refractive index layer that deviates by more than 0.1 nm from that of the high refractive index layer of the subsystem that is second most distant from the substrate.
摘要:
Objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. In the case of objectives with at least two fluoride crystal lenses, it is favorable if the fluoride crystal lenses are arranged such that they are rotated with respect to one another. The lens axes of the fluoride crystal lenses may in this case point not only in the crystallographic direction but also in the crystallographic direction or in the crystallographic direction. A further reduction in the detrimental influence of birefringence is achieved by the simultaneous use of groups with (100)-lenses rotated with respect to one another and groups with (111)-lenses or (110)-lenses rotated with respect to one another. A further reduction in the detrimental influence of birefringence is obtained by covering an optical element with a compensation coating.
摘要:
An objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens is disclosed. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. A further reduction in the detrimental influence of birefringence is obtained by covering an optical element with a compensation coating.
摘要:
The invention concerns an optical element, in particular for an objective or an illumination system of a microlithographic projection exposure apparatus, including a substrate which for light of a predetermined working wavelength which passes through the substrate causes a first retardation between mutually perpendicular polarization states, and a layer which is epitaxially grown on the substrate and which is made from a material with non-cubic crystal structure, which by virtue of natural birefringence causes a second retardation between mutually perpendicular polarization states, which at least partially compensates for the first retardation caused in the substrate.
摘要:
A projection objective (5) for microlithography for projecting a pattern arranged in an object plane (8) of the projection objective (5) has in the light path between the object plane (8) and the image plane (11) at least one beam deflecting device (19) with at least one totally reflective surface (17) that is inclined to an incidence direction of the radiation incident on the totally reflective surface (17) in such a way that substantially all the radiation coming from the object plane (8) and striking the totally reflective surface (17) is totally reflected at the totally reflective surface (17). A high reflectivity in conjunction with high angle of incidence with respect to the surface normal to the totally reflective surface (17) can be achieved with the aid of the beam deflecting device (19). In the case of catadioptric projection objectives, in particular, it is possible thereby to fashion designs that without the use of total reflection for beam deflection can be implemented only with a substantially greater outlay on construction.
摘要:
A catadioptric projection objective having a catadioptric lens section and a dioptric lens section is disclosed. Its catadioptric lens section comprises a concave mirror and a beam-deflecting device, which, in the case of one embodiment, comprises a physical beamsplitter having a polarization-beamsplitting surface, followed by a deflecting mirror. The reflectance curve of that beamsplitting surface for s-polarized light, the transmittance, TPBS, of that beamsplitting surface for p-polarized light, and the reflectance of the deflecting mirror for light coming from the beamsplitter are adapted to suit one another such that large variations in that transmittance, TPBS, for incidence angles close to the beamsplitting coating's internal Brewster angle are compensated such that the total transmittance of the beam-deflecting device remains essentially constant over the entire utilized range of incidence angles. The resultant projection objective allows uniformly illuminating the image field, without incidence of apodization effects.
摘要:
A catadioptric projection objective for images an object field onto an image field via imaging radiation. The projection objective includes at least one reflective optical component and a measuring device. The reflective optical component, during the operation of the projection objective, reflects a first part of the imaging radiation and transmits a second part of the imaging radiation. The reflected, first part of the imaging radiation at least partly contributes to the imaging of the object field. The transmitted, second part of the imaging radiation is at least partly fed to a measuring device. This allows a simultaneous exposure of the photosensitive layer at the location of the image field with the imaging radiation and monitoring of the imaging radiation with the aid of the measuring device.
摘要:
A projection exposure system includes an illumination system configured to illuminate a mask with radiation. The projection exposure system also includes a projection objective configured to project an image of a pattern of the mask onto a radiation-sensitive substrate. The projection exposure system further includes an angle-selective filter arrangement arranged at or close to a field surface of the projection objective in a projection beam path optically downstream of the object surface. The angle-selective filter arrangement is effective to filter radiation incident on the filter arrangement according to an angle-selective filter function.