Abstract:
A vacuum processing apparatus having an atmospheric-pressure transport chamber for conveying samples, lock chambers that accommodate the samples conveyed in and have an ambient capable of being switched between an atmospheric ambient and a vacuum ambient, a vacuum transport chamber coupled to the lock chambers, and at least one vacuum chamber for processing the samples. The apparatus further includes cooling portions operable to cool the high-temperature samples processed by the vacuum chamber. Each cooling portion has: a sample stage over which the high-temperature samples are placed and which has a coolant channel; gas-blowing tubes disposed closer to the inlet/exit port and acting to blow gas toward the sample stage; and an exhaust port disposed on the opposite side of the sample stage with regard to the inlet/exit port and acting to discharge the gas blown from the gas-blowing tubes.
Abstract:
A ceramic film is formed by a spray method on a base material of an electrostatic attraction device. Electrode films for electrostatic attraction are formed by a spray method on a surface of the ceramic film. A ringular heater film is formed in a spray method between the electrode films in a radial direction of the electrode films. In addition, a ceramic film is formed by a spray method on upper surfaces of the electrode films and the heater film.
Abstract:
A heat development processor includes a heat roller whose peripheral surface is heated to a predetermined temperature, the heat roller being adapted to transport in close contact therewith a heat-developable light-sensitive material with a latent image formed thereon, so as to heat develop the heat-developable light-sensitive material; and a backup roller disposed in face-to-face relation with the heat roller and having a gap between the same and the heat roller, the gap corresponding to or greater than the thickness of the heat-developable light-sensitive material. Since a gap is provided between the heat roller and the backup roller, a nipping force does not act between them, making it possible to squeeze out steam from between the heat-developable light-sensitive material and the peripheral surface of the heat roller.
Abstract:
A drier apparatus for drying sheets of photosensitive material processed with processing solutions while the photosensitive material is being transported. Rollers are provided along a transport passage for transporting the photosensitive material, and the rollers transport the photosensitive material and dry the photosensitive material by heating. The rollers are heated by heaters, respectively. The surface temperature of each roller is detected by a temperature detector, and a controller controls the heaters in such a manner that the range of fluctuation of the surface temperature of each roller falls within a predetermined range of values on the basis of the change with time of the detected surface temperatures of the rollers.
Abstract:
A vacuum processing apparatus includes vacuum processing vessels each having a processing chamber with a pressure-reduced interior space, a vacuum transfer vessel which is coupled to the vacuum vessels disposed therearound and which has a low-pressure interior space in which a to-be-processed workpiece is conveyed, an atmospheric air transfer vessel which is coupled to the front side of the vacuum transfer vessel and which includes on its front face side cassette tables mounting thereon a cassette with the workpiece received therein for conveying the workpiece in an interior space under an atmospheric pressure, a position-aligning machine disposed within the atmospheric air transfer vessel at one of right and left ends for adjusting a position of the workpiece, and an adjuster disposed between lower part of this machine and a floor face for adjusting the supply of a fluid being fed to the vacuum processing vessels.
Abstract:
A vacuum processing system including a cassette holder for setting up cassettes in which samples are stored, an air-transfer chamber for transferring the samples, lock chambers for storing the samples transferred from the air-transfer chamber, the lock chambers being capable of switching between air atmosphere and vacuum atmosphere in their inside, a vacuum transfer chamber connected to the lock chambers, vacuum containers for processing the samples transferred via the vacuum transfer chamber, a cooling chamber for cooling the samples down to a first temperature, the samples being processed in at least one of the vacuum containers, and a cooling unit for cooling the samples down to a second temperature, the samples being cooled in the cooling chamber. The cooling unit is deployed in the air transfer chamber, and has a cooling part for cooling the samples, being cooled in the cooling chamber, down to the second temperature.
Abstract:
A vacuum processing apparatus which includes a vacuum vessel having a processing chamber provided therein into which a processing gas is supplied to form a plasma and which processes a wafer located in the processing chamber, and a vacuum transfer vessel having a vacuumed transfer chamber coupled with the vacuum vessel provided therein into which the wafer is transferred. A resin-made film having a plasma resistance is bonded onto a surface of a lid of the vacuum transfer vessel on the side of the transfer chamber.
Abstract:
The invention provides a semiconductor manufacturing apparatus having a high productivity per installed area. In a vacuum processing apparatus provided with a plurality of cassettes on which a cassette is stored, a vacuum feed chamber arranged in a back face side of the atmospheric air feed chamber in a state of being coupled thereto, having a polygonal plane shape and structured such that the wafer is fed in a depressurized inner portion, and a plurality of vacuum processing chambers detachably coupled to a side surface of the vacuum feed chamber, arranged in adjacent thereto and processing the wafer fed to an inner portion from the vacuum feed chamber, a plurality of vacuum processing apparatuses includes a plurality of etching processing chamber carrying out an etching process of the wafer and at least one ashing processing chamber carrying out an ashing process of the wafer, the ashing processing chamber is coupled to a side surface in one of right and left sides as seen from the front face of the vacuum feed chamber, and the atmospheric air feed chamber is arranged so as to be biased to the one side to which the ashing processing chamber is coupled.
Abstract:
In a vacuum processing apparatus including a plurality of vacuum transfer vessels arranged back and forth at the back of a lock chamber, an intermediate chamber arranged between them and capable of accommodating wafers, and processing units connected to respective vacuum transfer vessels, a wafer processed in a pre-processing vessel out of the processing units connected to the respective vacuum transfer vessels is transferred to a post-processing vessel connected to the same vacuum transfer vessel and post-processing is performed.