Abstract:
A vacuum processing apparatus includes a robot connected to a vacuum container to carry a wafer on one of its two arms to or from a processing chamber; a unit to detect an amount of deviation of the wafer from a predetermined wafer mounting position on the arm that may occur when the robot carries the wafer into or out of the processing chamber; and an adjusting device to adjust the operation of the robot based on the detected amount of deviation. The adjusting device adjusts the robot operation based on the result of a teaching operation performed in advance. After being subjected to the initial teaching operation, the robot again undergoes a second teaching operation according to the information on the amount of wafer position deviation that is detected by moving the wafer in a predetermined transfer pattern, before the wafer processing is performed.
Abstract:
A vacuum processing apparatus includes a transfer unit disposed at a center thereof, plural processing chambers, each processing chamber having a processing table for supporting an object to be processed and carrying out processing using a gas, and a mass flow controller unit interposed between two of the processing chambers for supplying gas to the chambers.
Abstract:
The invention provides a highly reliable plasma processing apparatus having stable sealing performance. The vacuum processing apparatus comprises a vacuum vessel having its inside decompressed; an opening disposed in a wall of the vacuum vessel for communicating the inside with the outside thereof and through which a sample to be processed is taken in and out; a valve body 701 disposed outside the wall for airtightly sealing or opening the opening; and a drive unit for driving the valve body to carry out the sealing or opening operation, the drive unit comprising a first member 705 coupled to an actuator 702 that moves along a substantially linear first direction as a result of operation of the actuator, a second member 706 coupled to the first member 705 that moves along a substantially linear second direction that intersects with the first direction, and the valve body 701 coupled to the second member that seals the opening as a result of the movement of the second member.
Abstract:
A vacuum processing apparatus includes a transfer unit disposed at a center thereof, plural processing chambers, each processing chamber having a processing table for supporting an object to be processed and carrying out processing using a gas, and a mass flow controller unit interposed between two of the processing chambers for supplying gas to the chambers.
Abstract:
The present invention provides a plasma processing apparatus or a plasma processing method that can etch a multilayer film structure for constituting a gate structure with high accuracy and high efficiency. A plasma processing method of, on processing a sample on a sample stage 112 in a depressurized discharge room 117, etching a multilayer film (including a high-k and a metal gate) at 0.1 Pa or less and with the sample stage 112 temperature-regulated by using a pressure gauge 133 to be used for pressure regulation and connected to the processing room and a main pump for exhaustion 130.
Abstract:
In performing plasma etching with the aim to form a gate electrode on a large-diameter substrate, it is difficult according to prior art methods to ensure the in-plane uniformity of CD shift of the gate electrode. The present invention solves the problem by supplying processing gases having different flow rates and compositions respectively through openings formed at positions opposing to the substrate and at the upper corner or side wall of the processing chamber.
Abstract:
The present invention provides a vacuum processing apparatus which is small-sized and requires a small installation area. The vacuum processing apparatus includes a vacuum container which has a processing chamber inside thereof, wherein the pressure inside the processing chamber is reduced and plasma used for processing a sample is formed inside the processing chamber, a bed portion which is arranged below the vacuum container and stores a device for supplying electricity and electric signals used for processing inside the vacuum container, and a transport chamber which is connected with the vacuum container and includes a transport device for transporting the sample inside thereof. The vacuum processing apparatus further includes a connector portion which is mounted on the bed portion in a state that the connector portion faces a lower portion of the transport chamber, wherein the bed portion is configured to be detachably mounted on the vacuum processing apparatus in a state that the bed portion performs the connection and the disconnection at the connector portion.
Abstract:
To improve an actual exhaust speed, in a vacuum processing device for processing a work located in a vacuum processing chamber by using a processing gas introduced into the vacuum processing chamber, the vacuum processing device having means for introducing the processing gas into the vacuum processing chamber, means for controlling a gas flow of the processing gas, and means for exhausting the processing gas after the work is processed by the processing gas; the exhausting means comprises an exhaust pump, a buffer space extended in a direction substantially perpendicular to a center of the work with an extended area larger than a size of a suction port of the exhaust pump, and a gas outlet formed on a back side of a surface of the work to be processed, the gas outlet having a size substantially equal to or larger than the size of the suction port of the exhaust pump. Further, the exhaust arrangement can be provided at a shifted position so as to allow a work space beneath a work table.
Abstract:
A vacuum processing apparatus includes a robot connected to a vacuum container to carry a wafer on one of its two arms to or from a processing chamber; a unit to detect an amount of deviation of the wafer from a predetermined wafer mounting position on the arm that may occur when the robot carries the wafer into or out of the processing chamber; and an adjusting device to adjust the operation of the robot based on the detected amount of deviation. The adjusting device adjusts the robot operation based on the result of a teaching operation performed in advance. After being subjected to the initial teaching operation, the robot again undergoes a second teaching operation according to the information on the amount of wafer position deviation that is detected by moving the wafer in a predetermined transfer pattern, before the wafer processing is performed.
Abstract:
A vacuum processing apparatus includes vacuum processing vessels each having a processing chamber with a pressure-reduced interior space, a vacuum transfer vessel which is coupled to the vacuum vessels disposed therearound and which has a low-pressure interior space in which a to-be-processed workpiece is conveyed, an atmospheric air transfer vessel which is coupled to the front side of the vacuum transfer vessel and which includes on its front face side cassette tables mounting thereon a cassette with the workpiece received therein for conveying the workpiece in an interior space under an atmospheric pressure, a position-aligning machine disposed within the atmospheric air transfer vessel at one of right and left ends for adjusting a position of the workpiece, and an adjuster disposed between lower part of this machine and a floor face for adjusting the supply of a fluid being fed to the vacuum processing vessels.