Abstract:
A catalyst composition is applied to an interior of a hollow substrate. The composition is coated on the substrate by immersing the substrate into a vessel containing a bath of coating slurry. A vacuum is then applied to the partially immersed substrate. The intensity of the vacuum and its application time is sufficient to draw the coating slurry upwardly from the bath into each of a plurality of channels located in the interior of the hollow substrate. After removing the substrate from the bath, it is rotated 180°. A blast of pressurized air is applied at an intensity and for a time sufficient to distribute the coating slurry within the channels of the substrate to form a uniform coating profile therein.
Abstract:
An exhaust gas purification catalyst for removing carbon monoxide, hydrocarbons and nitrogen oxides from an exhaust gas and suppressing the evolution of hydrogen sulfide comprises a monolithic support and deposited thereon, at least one platinum-group element, active alumina, cerium oxide and germanium oxide. The catalyst is produced by a process which comprises(a) a step of preparing active alumina having a compound of at least one platinum-group element deposited thereon,(b) a step of preparing a slurry comprising the active alumina obtained in step (a), cerium oxide, and germanium oxide, and(c) a step of depositing the slurry on a monolithic support and calcining the support.
Abstract:
A catalyst, and a method for producing the catalyst, and a method for purifying exhaust gases which is very efficient in its use of rhodium has a layered catalytic structure on a refractory substrate, the inner layer containing ceria and platinum, the outer layer containing zirconia and rhodium.
Abstract:
A catalyst composition is applied to an interior of a hollow substrate. The composition is coated on the substrate by immersing the substrate into a vessel containing a bath of coating slurry. A vacuum is then applied to the partially immersed substrate. The intensity of the vacuum and its application time is sufficient to draw the coating slurry upwardly from the bath into each of a plurality of channels located in the interior of the hollow substrate. After removing the substrate from the bath it is rotated 180°. A blast of pressurized air is applied at an intensity and for a time sufficient to distribute the coating slurry within the channels of the substrate to form a uniform coating profile therein.
Abstract:
A catalyst composition is applied to an interior of a hollow substrate. The composition is coated on the substrate by immersing the substrate into a vessel containing a bath of coating slurry. A vacuum is then applied to the partially immersed substrate. The intensity of the vacuum and its application time is sufficient to draw the coating slurry upwardly from the bath into each of a plurality of channels located in the interior of the hollow substrate. After removing the substrate from the bath, it is rotated 180°. A blast of pressurized air is applied at an intensity and for a time sufficient to distribute the coating slurry within the channels of the substrate to form a uniform coating profile therein.
Abstract:
A catalyst composition comprising a refractory support having deposited thereon an active layer containing a platinum group metal component comprising an alumina component having the platinum group metals rhodium and palladium dispersed thereon, a cerium compound, a strontium compound, and a zirconium compound.
Abstract:
This invention relates to a purifying-catalyst for exhaust gas emitted from internal combustion engines such as automobiles, and the object is to provide a catalyst which exhibits excellent exhaust gas purification performance at lower temperature compared to usual catalysts, even after high temperature aging, and a process for preparation thereof. This object has been attained by an exhaust gas-purifying catalyst which has a structure to have at least two catalyst component-containing layers on a support having a monolithic structure, and wherein, as the catalyst components, the inner catalyst component-containing layer contains at least one element of the platinum group, activated alumina and cerium oxide, the outer catalyst component-containing layer contains at least one element of the platinum group, activated alumina and optionally a zirconium compound, and at least one of the inner catalyst component-containing layer and the outer catalyst component-containing layer further contains a coprecipitated ceria-stabilized zirconia.
Abstract:
This invention relates to a purifying-catalyst for exhaust gas emitted from internal combustion engines such as automobiles, and the object is to provide a catalyst which exhibits excellent exhaust gas purification performance at lower temperature compared to usual catalysts, even after high temperature aging, and a process for preparation thereof.This object has been attained by an exhaust gas-purifying catalyst containing on a support having a monolithic structure as catalytic components at least one element of the platinum group, activated alumina, cerium, a coprecipitated ceria-stabilized zirconia oxide and optionally a zirconium compound, and a process for preparation of the above exhaust gas-purifying catalyst which comprises(a) preparing activated alumina containing at least one element of the platinum group,(b) preparing a slurry containing this prepared platinum group element-containing activated alumina, cerium oxide, the coprecipitated ceria-stabilized zirconia and optionally the zirconium compound, and(c) coating the slurry onto the support having a monolithic structure and calcining it.
Abstract:
A three-way catalyst for the purification of automotive exhaust is made by depositing on a monolithic support a slurry containing a platinum group element, active alumina, cerium oxide a barium compound and a zirconium compound and calcining the support.
Abstract:
A catalyst composition is applied to an interior of a hollow substrate. The composition is coated on the substrate by immersing the substrate into a vessel containing a bath of coating slurry. A vacuum is then applied to the partially immersed substrate. The intensity of the vacuum and its application time is sufficient to draw the coating slurry upwardly from the bath into each of a plurality of channels located in the interior of the hollow substrate. After removing the substrate from the bath, it is rotated 180°. A blast of pressurized air is applied at an intensity and for a time sufficient to distribute the coating slurry within the channels of the substrate to form a uniform coating profile therein.